Back to Table of Contents
47332-G10
Synthesis, Structural Characterization and Property Optimization of Novel Antimonides and Bismuthides Promising Materials for Thermal-to-Electric Energy Conversion
Svilen Bobev, University of Delaware
The typical Zintl phases are formed among
elements with very different electronegativities and their structures can be
understood by assuming a complete electron transfer from the cations to the
anions. Using this approach, also
referred to as the Zintl-Klemm-Bussmann (ZKB) concept, the constituent atoms
can be viewed as arranging themselves in partial cationic and anionic
sub-networks, all achieving closed-shells following the octet rule. In most cases this assumption is
justified, especially for structures built of small, simple units. However, rationalization of the bonding
in Zintl phases with complicated extended frameworks has proven non-trivial,
especially in cases with extensive metal-metal interactions, which are neither
typical covalent nor typical ionic bonds.
In previous studies, we have investigated
Zintl-like chemistry involving d5
and d10 metals and have
already reported on the structures and bonding of several ternary Zintl
compounds with Mn, Zn, or Cd. A
common structural element in all of these compounds are the d- metal centered tetrahedra of pnicogens, which are
connected via corner or edge-sharing into larger clusters, chains, layers or
frameworks. These results showed
the importance of the cation-anion interactions and the delicate balance
between the atomic sizes and electronic requirements in rationalizing the
structures and properties. Typical
examples include the structural evolution between Ca2CdSb2
and Sr2CdSb2, where the [CdSb2]4–
layers in Ca2CdSb2 break into [Cd4Sb9]19–
chains in Sr2CdSb2 in order to optimize the space filling
with the bigger Sr2+ cations (Figure 1). Similar cation effect was recently reported for the
counterparts Sr21Cd4Bi18 and Ba21Cd4Bi18. In this instance, the bigger Ba2+
cations cause the [Cd8Bi22]48–
polyanions in Sr21Cd4Bi18 to break into
smaller [Cd4Bi12]26– ones, which pack in
a different crystallographic arrangement (Figure 2).
During the studies of A21Cd4Bi18
and their Sb-analogs A21Cd4Sb18 (A = Sr, Ba,
Eu), a new compound was serendipitously synthesized, Ba11Cd6Sb12. The latter is isostructural with Sr11Cd6Sb12,
and its structure features CdSb4 tetrahedra that share corners and
form polyanionic sub-structure consisting of one-dimensional ribbons (Figure
3). Notably, there also are some
short Sb–Sb bonds, which "zip" the corners of two CdSb4
tetrahedra, leading to a unique arrangement that was dubbed "double pentagonal
tubes" in the original description.
Applying the ZKB concept to rationalize the bonding in this structure
type appears straightforward and results in the formulation [A2+]11[Cd6Sb12]22–,
i.e., both Ba11Cd6Sb12 and Sr11Cd6Sb12
should be electron-precise Zintl phases.
However, upon careful examination of all polyanionic interactions in the
new Ba11Cd6Sb12 compound, we noticed an unusually
long Cd–Sb contact, on the order of 3.55 (Figure 4). Slightly shorter, about 3.27 , but
also long Cd–Sb interaction is known for Sr11Cd6Sb12. For comparison, all other Cd–Sb
contacts within these units fall in the range 2.872(2)-3.009(2) in Sr11Cd6Sb12
and 2.919(1)-3.106(1) in Ba11Cd6Sb12. Such distances are comparable with the
Cd–Sb distances in other intermetallic compounds with structures based on
CdSb4 tetrahedra, such as Ca2CdSb2, Sr9Cd4.49Sb9,
Ba21Cd4Sb18, SrCd2Sb2,
etc. Based on the results from
this comparative analysis, we can argue that the distance of 3.552(2) between
Cd3 and Sb5 in Ba11Cd6Sb12 represents a weak
interaction. Although it is
difficult to quantify the strength of a given interaction according to an
empirical bond-length criterium, the Cd3–Sb5 distance that is more than
20% larger than the sum of the corresponding Pauling's covalent radii clearly
points out that the latter should not be treated as a typical
2-center-2-electron bond.
This prompted us to investigate the electronic
structures of these two compounds by the Density Functional Theory (DFT) and
the Local Density Approximation (LDA).
Additional insights of the chemical bonding were obtained by the
Extended Hckel (EH) method. Our
theoretical analyses suggest that, indeed, these long Cd–Sb contacts
represent weakly bonding interactions, and that the classic Zintl ideas cannot
provide an adequate rationale to the bonding in these, otherwise typical Zintl
phases. Following comparisons with
other intermetallics with Cd–Sb polyanionic sub-networks and analyses of
the chemical bonding based on our calculations, it can be suggested that the
simplistic description of the "11-6-12" structure is not informative –
two of the Cd–Sb interactions are very weak, while the homoatomic
Sb–Sb interactions are very strong, and both are inconsistent with the
notion of 2-center-2-electron bonding.
Despite these subtleties, the polyanionic framework retains its
Zintl-like electron requirements.
A systematic examination on the electronic band structures, crystal
orbital Hamilton populations and Mulliken charge populations indicates that the
Sb2 dimers play important role for optimization of the bonding. These findings complement our recent
reports on other related Zintl phases with transition metals, suggesting an
inadequacy of the classic (empirical) rules for electron counting for
understanding the complicated structures of these intermetallic compounds.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Back to top