Back to Table of Contents
44627-G10
Developing the Aqueous Electrodeposition of Promising Anode Materials for Li-ion Batteries
Amy L. Prieto, Colorado State University
We have used
the second year of PRF funding to pursue a project focused on battery
materials. Rechargeable lithium
batteries are widely used for portable electronics because lithium is the
lightest and most electropositive element critical for high energy density. ADDIN EN.CITE
<EndNote><Cite><Author>Tarascon</Author><Year>2001</Year><RecNum>799</RecNum><record><rec-number>799</rec-number><foreign-keys><key
app="EN" db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">799</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Tarascon,
J.-M.</author><author>Armand,
M.</author></authors></contributors><titles><title>Issues
and Challenges Facing Rechargeable Lithium
Batteries</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>359</pages><volume>414</volume><keywords><keyword>li
battery review</keyword></keywords><dates><year>2001</year><pub-dates><date>15
November</date></pub-dates></dates><work-type>review</work-type><urls></urls></record></Cite></EndNote>1 Pure lithium anodes present a safety hazard due to their explosive
reactivity. Intermetallics that can intercalate
lithium are an attractive alternative to carbon anodes because they operate
several hundred millivolts more positive than the
lithium plating potential.
ADDIN EN.CITE
<EndNote><Cite><Author>Thackeray</Author><Year>2003</Year><RecNum>804</RecNum><record><rec-number>804</rec-number><foreign-keys><key
app="EN" db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">804</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Thackeray,
M.M.</author><author>Vaughey, J.T.</author><author>Johnson,
C.S.</author><author>Kropf, A.J.</author><author>Benedek,
R.</author><author>Fransson,
L.M.L.</author><author>Edstrom,
K.</author></authors></contributors><titles><title>Structural
Considerations of Intermetallic Electrodes for Lithium Batteries</title><secondary-title>J.
Power Sources</secondary-title></titles><pages>124-130</pages><volume>113</volume><keywords><keyword>review,
lithium intercalation,
intermetallics</keyword></keywords><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>2 Consequently there is no danger of dendritic
growth of lithium on the anode. Their main disadvantage is the volume change
associated with the conversion of the parent compound to the lithiated counterpart. Repeated cycling pulverizes the
particles, resulting in a loss of electrical contact. ADDIN EN.CITE
<EndNote><Cite><Author>Tarascon</Author><Year>2001</Year><RecNum>799</RecNum><record><rec-number>799</rec-number><foreign-keys><key
app="EN" db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">799</key></foreign-keys><ref-type
name="Journal Article">17</ref-type><contributors><authors><author>Tarascon,
J.-M.</author><author>Armand,
M.</author></authors></contributors><titles><title>Issues
and Challenges Facing Rechargeable Lithium Batteries</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>359</pages><volume>414</volume><keywords><keyword>li
battery
review</keyword></keywords><dates><year>2001</year><pub-dates><date>15
November</date></pub-dates></dates><work-type>review</work-type><urls></urls></record></Cite><Cite><Author>Thackeray</Author><Year>2003</Year><RecNum>804</RecNum><record><rec-number>804</rec-number><foreign-keys><key
app="EN" db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">804</key></foreign-keys><ref-type
name="Journal Article">17</ref-type><contributors><authors><author>Thackeray,
M.M.</author><author>Vaughey,
J.T.</author><author>Johnson,
C.S.</author><author>Kropf,
A.J.</author><author>Benedek, R.</author><author>Fransson,
L.M.L.</author><author>Edstrom,
K.</author></authors></contributors><titles><title>Structural
Considerations of Intermetallic Electrodes for Lithium
Batteries</title><secondary-title>J. Power
Sources</secondary-title></titles><pages>124-130</pages><volume>113</volume><keywords><keyword>review,
lithium intercalation,
intermetallics</keyword></keywords><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>1, 2
One way to minimize large volume changes is to use intermetallics
that have strong structural relationships to their lithiated
counterparts. ADDIN
EN.CITE
<EndNote><Cite><Author>Thackeray</Author><Year>2003</Year><RecNum>804</RecNum><record><rec-number>804</rec-number><foreign-keys><key
app="EN" db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">804</key></foreign-keys><ref-type
name="Journal Article">17</ref-type><contributors><authors><author>Thackeray,
M.M.</author><author>Vaughey,
J.T.</author><author>Johnson,
C.S.</author><author>Kropf, A.J.</author><author>Benedek,
R.</author><author>Fransson,
L.M.L.</author><author>Edstrom, K.</author></authors></contributors><titles><title>Structural
Considerations of Intermetallic Electrodes for Lithium
Batteries</title><secondary-title>J. Power
Sources</secondary-title></titles><pages>124-130</pages><volume>113</volume><keywords><keyword>review,
lithium intercalation,
intermetallics</keyword></keywords><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>2 Cu2Sb reacts with lithium to produce Li3Sb via
Li2CuSb. ADDIN
EN.CITE
<EndNote><Cite><Author>Fransson</Author><Year>2001</Year><RecNum>617</RecNum><record><rec-number>617</rec-number><foreign-keys><key
app="EN"
db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">617</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Fransson,
L.M.L.</author><author>Vaughey,
J.T.</author><author>Benedek,
R.</author><author>Edstrom, K.</author><author>Thomas,
J.O.</author><author>Thackeray,
M.M.</author></authors></contributors><titles><title>Phase
Transitions in Lithiated Cu2Sb Anodes for Lithium Batteries: An in situ X-ray
Diffraction Study</title><secondary-title>Electrochem.
Comm.</secondary-title></titles><pages>317-323</pages><volume>3</volume><keywords><keyword>Cu2Sb,
Li intercalation</keyword></keywords><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>3 The Sb skeleton remains face-centered cubic
for all phases, and changes volume by only 94%. Nanoscale dimensions have
improved the reversibility of this type of reaction. ADDIN EN.CITE
<EndNote><Cite><Author>Li</Author><Year>2001</Year><RecNum>679</RecNum><record><rec-number>679</rec-number><foreign-keys><key
app="EN"
db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">679</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Li,
N.</author><author>Martin,
C.R</author><author>Scrosati,
B.</author></authors></contributors><titles><title>Nanomaterial-based
Li-ion Battery Electrodes</title><secondary-title>J. Power Sources</secondary-title></titles><pages>240-243</pages><volume>97-98</volume><keywords><keyword>nanowires
for Li batteries,
SnO2</keyword></keywords><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>4 We have developed the room temperature electrodeposition
of Cu2Sb from aqueous solutions. ADDIN EN.CITE
<EndNote><Cite><Author>Mosby</Author><Year>2008</Year><RecNum>520</RecNum><record><rec-number>520</rec-number><foreign-keys><key
app="EN" db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">520</key></foreign-keys><ref-type
name="Journal Article">17</ref-type><contributors><authors><author>Mosby,
J.</author><author>Prieto, A.
L.</author></authors></contributors><titles><title>Direct
Electrodeposition of Promising Lithium-Ion Battery Anode Materials: The Case of
Cu2Sb</title><secondary-title>J. Am. Chem. Soc.</secondary-title></titles><periodical><full-title>J.
Am. Chem. Soc.</full-title></periodical><volume>accepted,
5/9/08, posted on ASAP
7/16/08</volume><edition>7/16/08</edition><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>5 Electrodeposition is an ideal synthetic
method because it can result in crystalline, stoichiometric
products with excellent electrical contact to an electrode. We are extending our approach to other
anode materials.
CV of 1.0 M aqueous citric acid, 0.1 M Mn(CH3COO)2, and 0.1 M Sb(CH3COO)3. Reference electrode (SSCE), working and counter electrodes (Pt), and scan rate (250 mV/s). |
The lithiation of Mn2Sb proceeds
directly to Li3Sb with very little LiMnSb
formation, then cycles almost identically to MnSb.
The cause for this is not understood. Based on the stability of Mn-citrate
complexes in aqueous solution, we attempted the deposition of Mn2Sb.
ADDIN EN.CITE
<EndNote><Cite><Author>Matzapetakis</Author><Year>2000</Year><RecNum>866</RecNum><record><rec-number>866</rec-number><foreign-keys><key
app="EN"
db-id="2vsvt5eetr2vpne50vrptefpfxfa9vxperwz">866</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Matzapetakis,
M.</author><author>Karligiano, N.</author><author>Bino,
A.</author><author>Dakanali,
M.</author><author>Raptopoulou,
C.P.</author><author>Tangoulis,
V.</author><author>Terzis,
A.</author><author>Giapintzakis,
J.</author><author>Salifoglou,
A.</author></authors></contributors><titles><title>Manganese
Citrate Chemistry: Syntheses, Spectroscopic Studies, and Structural
Characterizations of Novel Mononuclear, Water-Soluble Manganese Citrate
Complexes</title><secondary-title>Inorg.
Chem.</secondary-title></titles><periodical><full-title>Inorg.
Chem.</full-title></periodical><pages>4044-4051</pages><volume>39</volume><dates><year>2000</year></dates><urls></urls></record></Cite></EndNote>6 As the pH is increased to 6 there is a single distinct anodic peak
present at -1.2 V before the onset of hydrogen evolution. Films deposited at pH
6 and -1.2 V show the codeposition of both metals,
but not the intermetallic compound.We have begun to explore other carboxylic acids, beginning with gluconic acid. The solubility of both manganese and
antimony precursors in this acid are high, and the accessible pH range is
large. Films deposited at -1.2 V
show the presence of Mn and Sb at pH 4, but only Sb at pH 5 (as determined by XRD). CV's of manganese by
itself show no electrochemical activity distinct from the gluconic
acid, however in the presence of antimony species in solution the codeposition
of the two metals is possible. The deposition of the intermetallic
is not observed. Future work will determine
the speciation present in both solutions as a route toward the direct electrodeposition.
ADDIN EN.REFLIST 1. Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359.
2. Thackeray,
M. M. et al.
J. Power Sources 2003, 113, 124.
3. Fransson, L. M. L.et al. Electrochem. Comm. 2001, 3, 317.
4. Li,
N.et al. J.
Power Sources 2001, 97-98, 240.
5. Mosby,
J.; Prieto, A. L. J. Am. Chem. Soc. 2008, posted on ASAP 7/16/08.
6. Matzapetakis, M.et al. Inorg. Chem. 2000, 39, 4044.
Back to top