
Primitive paths and tubes in strained “Olympic gels”

Problem:
• Theories of nonlinear elasticity for gels make assumptions

about how the primitive path and tube deform
• No prior direct observations of tube in deformed gels

Approach:
• Melt of linked “Olympic rings” as proxy for gel
• “Isoconfigurational average” method to observe primitive path

and tube in simulation of bead-spring chains
• Progressively apply compressional or extensional strain,

observe how primitive path and tube respond

Results:
• Primitive path and tube deform nearly affinely, for modest strains
• Tube diameter varies smoothly with strain
• Our results provide useful input for gel elasticity models
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Primitive path after strain (blue; undeformed at 
center), vs. affinely deformed path (red)
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which states that the probability of the deformed vector
pointing to θ direction must equal that of the undeformed unit
vector pointing to β direction. Here |E·u| accounts for the
vector length change, which implicitly changes the fraction of
tube segment pointing to θ direction, and C is the
normalization constant. Substituting the differential d cos θ/d
cos β = |E·u|−3 derived from eq 3 into eq 4, we get
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The normalization constant C equals C = 2/(λ + arcsh((λ3 −
1)1/2)/(λ(λ3 − 1))1/2). For small strains, the distribution can be
approximated by 1/2 + (3 cos2 θ − 1)(λ − 1).

■ RESULTS
We present in this section the isoconfigurational ensemble
simulation results, including the shape of tube contour, the
contour length, the tangent orientation distribution of tube
contour, the tube diameter, and the correlation between tube
diameter and tube orientation. In all cases, we focus on the
deformation dependence. When possible, the results are
compared to IAA theory predictions.
Shape and Length of Primitive Path. Following our

previous work,17 we define the tube primitive path as the
average of bead positions recorded from all 100 isoconfigura-
tion ensemble trajectories, each of which contains 250 frames.
The number of frames used in the average defines a time τa. As
shown previously,17 the shape of the primitive path weakly
depends on the choice of τa. The higher the value of τa, the

smoother the primitive path. Here, we fix the value of τa and
examine how the tube contour varies with strain.
The tube contours of a single polymer ring at strains λ = 0.5,

0.66, 1.0, 1.52, and 2.0 are shown in Figure 2. From left to right,
the strain values are increased. The curve in the middle (blue)
is the undeformed tube contour. The red curves to its left and
right are tube contours for the compressed and stretched cases.
The other blue curves are affine deformation theory predictions
obtained by applying the tensor E to the undeformed tube
contour. These visualizations suggest that, except for the λ = 2.0
case, the deformation of tube contour for strains between 0.5
and 2.0 can be well approximated with the affine deformation
theory.
We then examine the tube contour length L(λ), which is

calculated by summing up bond lengths of the tube contour.
The result of L(λ)/L(1) for different strain values are shown in
Figure 3 (curves with error bars). The two curves are obtained

from τa = 50 (blue) frames and 250 (red) frames. The data
values are calculated as the average of 12 independent ratios
L(λ)/L(1), i.e., 3 molecules in all 4 simulation sets. The
magnitudes of error bars are standard deviations divided by
√12.
The green solid curve in Figure 3 is the prediction of IAA

theory, eq 2, which describes qualitatively the trend of
simulation results but is only quantitatively consistent with
the case of τa = 50 frame. Both the data and theory suggest that
the contour length increases upon deformation. (It can be

Figure 1. Deformation of a unit vector u by a uniaxial deformation
tensor E.

Figure 2. Strain dependence of the tube contour. From left to right: λ = 0.5, 0.66, 1.0, 1.52, and 2.0. Results from isoconfigurational simulation (red)
and from the affine deformation prediction (blue) are show. The tube contours are defined using data from all 250 frames (τa = 250 frames).

Figure 3. Strain dependence of the tube contour length. Lines with
error bars are simulation results; blue for τa = 50 frames and red for τa
= 250 frames. Solid curve is the IAA theory prediction.
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shown that for volume-conserving deformations the IAA theory
always predict the contour length to increase; see eq 7.105 in
ref 1.) For strains up to 0.5 and 2.0, the contour length is
increased by about 10%. The results obtained from two
different τa values are consistent but do not agree quantitatively.
The origin of this unwanted dependence on τa will be discussed
in the section on using cloud peak to define the primitive path.
There we also introduce an alternative method to define the
tube centerline, which can be used to alleviate this effect.
Tangent Distribution. We present results on the

distribution of tube tangent vector orientations in this section.
Since we focus on uniaxial deformations in this study, the
orientation is represented by the cosine of polar angle θ of the
tangent vector. For the undeformed system, the tangent vector
orientation is random, so the distribution of cos θ is flat. In
systems to which stretch is applied, as λ increases, the tangent
vectors tend to be aligned with the z-axis, so the distribution
should have two peaks near values cos θ ± 1. For systems that
have been compressed, as λ decreases, the tangent vectors tend
to be aligned within the xy plane, so the distribution should
have one peak near cos θ = 0. The λ dependence of the
distribution predicted by the IAA theory is given by eq 5.
The results from the isoconfigurational ensemble simulations

are shown in Figures 4, 5, and 6 (solid lines; the results shown

are for τa = 250 frames; those for τa = 50 frames are similar).
Different plots are results for different strain values. For each
strain, we have used the tube contour data of all 3 rings in all 4
independent data sets to generate the distribution. The dashed
lines are predictions of the IAA theory, which describes the
distribution of the tube tangents nearly quantitatively, in accord
with observation in the previous section that the tube contour
shape is well described by the IAA theory.
Tube Diameter. To estimate the tube diameter, we use the

method developed in our previous work.17 In our simulation,
the bead positions recorded from all isoconfigurational
ensemble trajectories up to time τa form a cloud around the
mean positions. The cloud of a single bead has the shape of
ellipsoid, whose longest axis points along the tube tangent
direction because the bead motions along the perpendicular
directions are restricted by the tube confinement. So the extent
of cloud spreading along the perpendicular directions is a first

approximation to the tube diameter. More quantitatively, for
each bead cloud, we can evaluate the radius of gyration tensor,
calculate its eigenvalues, and use the average of the two smaller
eigenvalues as an estimate to the tube diameter. Details are
given in ref 17.
This method yields one value of tube diameter from each

bead in the system. The values from all 2400 beads in all 4
independent simulation sets can be used to generate an
distribution of tube diameters, which measures the spatial
inhomogeneity of the tube. The distributions we obtained for
the maximally compressed (λ = 0.5) case, the undeformed (λ =
1.0) case, and the maximally stretched (λ = 2.0) case are shown
in Figure 7. The figure on the left and right are for τa = 50
(12.5τe) frames and 250 (62.5τe) frames, respectively.
Because of the limited sample size, the distribution is a bit

noisy, but it is clear that as τa increases, the distribution
becomes broader, and that as strain increases, the distribution
shifts toward right (larger tube diameter). To alleviate the
dependence on τa, we calculated the average tube diameters at
different strains and normalized them by the undeformed value.
The results versus strain are plotted in Figure 8. The data values
in the figures are obtained as follows: we first computed the
ratios a(λ)/a(1) for each bead, then averaged the ratios for all
beads, all molecules, and all sets. The error bar is calculated by
the standard deviation, normalized by the square root of the
number of independent values, which we choose as 10 × 3 × 4
(10 entanglement strands per chain for Ne ≃ 80, times 3
molecules, times 4 data sets).
Two curves in Figure 8 are for τa = 250 frames (red) and τa =

50 frames (blue). The results suggest that the dependence on
τa, visible in Figure 7, is nearly absent for this quantity and that
the tube diameter increases with λ. For λ = 0.5 and 2.0, the
changes are of order 10%. This is definitely weaker than that
predicted by the HS11 and RP12 theories, which predicts a(λ)/
a(1) equal to(1/2)1/2 and √2 for λ = 0.5 and λ = 2 if the
orientation dependence is neglected (see the next section for
more discussion on the subtle difference between the two).

Tube Diameter versus Orientation. In Figure 9, we plot
the tube diameter versus the tube segment orientation (τa =
250 frames). The diameter is computed using the method of
the previous section, and the orientation is given by the cosine
of tube tangent polar angle. To improve statistics, we also
combined results from positive and negative cosine values. The
three panels from left to right are results for λ = 0.5, 1.0, and
2.0, respectively. In each panel, the cloud of green dots are
diameter−orientation pairs found from all beads. The red bars
indicate the standard deviation for cloud points in different
ranges of orientations. The denser the cloud, the more beads
have the corresponding tube diameter and orientation. It is
clear that the tube segments tend to align along directions
perpendicular to the z-axis in the compression case and that
they tend to align with the z-axis in the stretching cases. But the

Figure 4. Tangent vector distribution in the undeformed case (τa =
250 frames).

Figure 5. Tangent vector distribution in the stretched case (τa = 250 frames). From left to right: λ = 1.15, 1.32, 1.52, 1.74, and 2.0.
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dependence of average tube diameter on the orientation is very
weak. Only for the λ = 0.5 case, one can see that the tube
diameter for tube sections along the z-axis is slightly higher
than those perpendicular to the z-axis.
The orientation dependence we found from simulation is

much weaker than that predicted by the HS11 and RP12

theories. Those authors analyzed the bead mean-squared
displacements (MSD) along different directions. By introduc-
ing assumptions on how the strength of the confining potential
varies with deformation, it was predicted that the bead MSD
along direction α (α = x, y, z) should be proportional to the
deformation rate λα. Using the square root of bead MSD to

estimate the tube diameter, HS and RP found that the tube
diameter scales with λα

1/2. This predicted nonaffinely varied
tube diameter and anisotropy were later examined by simulated
networks with short (N ≤ 200) entanglement strands between
cross-links.15,16 To exclude the effects of the cross-links (which
are important for short bridging strands) and confirm the
prediction of HS and RP theories, refs 15 and 16 must rely on
the double tube model14 to indirectly test the HS and RP
theory prediction.
Our work is different from those earlier works. First, by

studying entangled rings, we have eliminated the cross-linking
effects completely, and we can use much larger rings (N = 800)
to examine the entanglement phenomena. Second, the sense of
orientation dependence in our work is also different from
theirs. They all focused on the effects of anisotropic
confinements on the bead motion, while neglecting the local
(actual) tube orientations. We however can look at the tube
orientations directly and examine how the strength of
confinement depends on orientations, which is different from
what were studied in previous work.

Results Based on Cloud Peak. Many results presented in
the previous sections depend on the choice of τa. This
dependence is generic as long as the tube contour is defined as
the average of bead positions from isoconfigurational
trajectories and is more pronounced for tube sections with

Figure 6. Tangent vector distribution in the compressed case (τa = 250 frames). From left to right: λ = 0.87, 0.76, 0.66, and 0.5.

Figure 7. Tube diameter distributions. Left: τa = 50 frames; right: τa = 250 frames. Blue: maximally compressed case (λ = 0.5); red: undeformed case
(λ = 1); yellow: maximally stretched case (λ = 2.0).

Figure 8. Strain dependence of the average tube diameter. Blue: τa =
50 frames; red: τa = 250 frames.

Figure 9. Orientation dependence of tube diameter in the deformed case (τa = 250 frames). From left to right: maximally compressed (λ = 0.5),
undeformed (λ = 1.0), and maximally stretched (λ = 2.0). Cloud points are values of tube diameters for tube segment with the specific polar angle;
the probability of tube segments orienting along a particular direction is proportional to the local cloud density. Data points with error bars are bin-
averaged tube diameters, the error bar given by the standard deviation.
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Tube tangent distribution P(cos(θ)) for increasing 
extension (top) and compression (bottom), vs. affine 
prediction (dashed)

dependence of average tube diameter on the orientation is very
weak. Only for the λ = 0.5 case, one can see that the tube
diameter for tube sections along the z-axis is slightly higher
than those perpendicular to the z-axis.
The orientation dependence we found from simulation is

much weaker than that predicted by the HS11 and RP12

theories. Those authors analyzed the bead mean-squared
displacements (MSD) along different directions. By introduc-
ing assumptions on how the strength of the confining potential
varies with deformation, it was predicted that the bead MSD
along direction α (α = x, y, z) should be proportional to the
deformation rate λα. Using the square root of bead MSD to

estimate the tube diameter, HS and RP found that the tube
diameter scales with λα

1/2. This predicted nonaffinely varied
tube diameter and anisotropy were later examined by simulated
networks with short (N ≤ 200) entanglement strands between
cross-links.15,16 To exclude the effects of the cross-links (which
are important for short bridging strands) and confirm the
prediction of HS and RP theories, refs 15 and 16 must rely on
the double tube model14 to indirectly test the HS and RP
theory prediction.
Our work is different from those earlier works. First, by

studying entangled rings, we have eliminated the cross-linking
effects completely, and we can use much larger rings (N = 800)
to examine the entanglement phenomena. Second, the sense of
orientation dependence in our work is also different from
theirs. They all focused on the effects of anisotropic
confinements on the bead motion, while neglecting the local
(actual) tube orientations. We however can look at the tube
orientations directly and examine how the strength of
confinement depends on orientations, which is different from
what were studied in previous work.

Results Based on Cloud Peak. Many results presented in
the previous sections depend on the choice of τa. This
dependence is generic as long as the tube contour is defined as
the average of bead positions from isoconfigurational
trajectories and is more pronounced for tube sections with

Figure 6. Tangent vector distribution in the compressed case (τa = 250 frames). From left to right: λ = 0.87, 0.76, 0.66, and 0.5.

Figure 7. Tube diameter distributions. Left: τa = 50 frames; right: τa = 250 frames. Blue: maximally compressed case (λ = 0.5); red: undeformed case
(λ = 1); yellow: maximally stretched case (λ = 2.0).

Figure 8. Strain dependence of the average tube diameter. Blue: τa =
50 frames; red: τa = 250 frames.

Figure 9. Orientation dependence of tube diameter in the deformed case (τa = 250 frames). From left to right: maximally compressed (λ = 0.5),
undeformed (λ = 1.0), and maximally stretched (λ = 2.0). Cloud points are values of tube diameters for tube segment with the specific polar angle;
the probability of tube segments orienting along a particular direction is proportional to the local cloud density. Data points with error bars are bin-
averaged tube diameters, the error bar given by the standard deviation.
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Tube diameter vs. strain (blue and red results 
for different isoconfigurational averaging times)
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