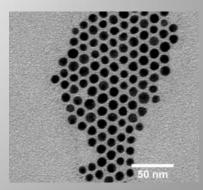

Intermetallic Base-Metal Catalysts for the Selective Functionalization of **Acetylene and Multifunctional Organic Compounds**


Charles Spanjers and Robert M. Rioux, Department of Chemical Engineering, Pennsylvania State University

PENNSTATE

NiZn crystal structure

NiZn nanoparticles

Catalysts that exhibit chemoselectivity, or the preferential reactivity of one functional group over another, are highly sought after in the field of catalysis. An example of a reaction where a catalyst with chemoselctivity is required is acetylene semi-hydrogenation. Preferential reactivity of triple bonds over double bonds allows for trace acetylene to be removed from ethylene feed streams destined for ethylene polymerization. A good catalyst for this reaction converts all of the acetylene to ethylene without further converting any ethylene to ethane. The catalyst that is industrially used to perform this reaction is a palladium-silver alloy which demonstrates high selectivity towards ethylene. We are developing catalysts that are composed of nickel and zinc, two abundant metals that allow for the creation of low-cost alternatives to palladium-silver. We have found that the amount of nickel and zinc in the catalysts influences selectivity and that oxidation of the zinc may play a role in enhancing selectivity towards ethylene. Using a combination of both theory and experimental work, we are determining the reason for the enhanced selectivity of nickel-zinc materials in hopes that our work leads to practical catalysts that are used industrially for chemoselective hydrogenations.