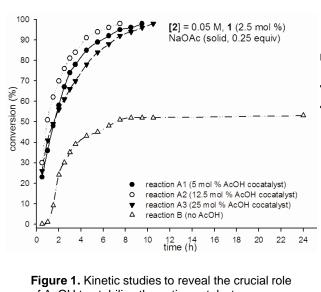

Catalytic Enantioselective Oxidative Cyclization by Cooperative Catalysis


Hao Xu, Department of Chemistry, Georgia State University

Densely functionalized cyclopentenones are useful synthetic intermediates. We report herein a new method to synthesize this important class of compounds through a highly enantioselective (98–> 99% ee) triene cyclization that is co-catalyzed by acetic acid and a chiral NHC. We discovered that not only could acetic acid co-exist with NHCs, but it could also greatly stabilize the active catalyst, which enables a long-lived catalyst with high reactivity and selectivity.

Table 1. Correlation of NHC reactivity withBrønsted bases and AcOH co-catalyst

$Me \xrightarrow{CO_2Me} Me \xrightarrow{CO_2Me} CO_2Me \xrightarrow{O} Mes \xrightarrow{MeO_2C} Me \xrightarrow{N} NeO_2C \xrightarrow{N} NEO_$							
entry	base (equiv)	solvent	1 (equiv)	time (h)	yield ^a (%)	final yield ^b (%)	ee ^c (%)
1	KHMDS (0.2)	THF	0.2	7	0	16	95
2	KO <i>t-</i> Bu (0.2)	THF	0.2	7	<5	17	98
3	DBU (0.2)	THF	0.2	7	0	0	NA
4	(<i>i</i> -Pr) ₂ EtN (0.2) THF	0.2	7	0	0	NA
5	Et ₃ N (0.2)	THF	0.2	7	0	0	NA
6	K ₂ CO ₃ (0.2)	THF	0.2	7	15	52	95
7	NaOAc (0.2)	THF	0.2	5	85	85	97
8	NaOBz (0.2)	THF	0.2	7	52	83	97
9	NaOAc (0.1)	THF	0.1	7	44	79	97
10	NaOAc (0.5)	THF	0.1	7	62	84	97
11	NaOAc (1.0)	THF	0.1	7	88	88	97
12	NaOAc (1.0)	ether	0.1	2.5	96	96	98
13 ^d	NaOAc (0.5)	ether	0.05	4.0	96	96	99
14 ^d	NaOAc (0.25)	ether	0.025	7.5	96	96	99

of AcOH to stabilize the active catalyst.

Table 2. Substrate scope of the cyclization reaction

nol %) equiv)	R^1 CO_2Me R^3 R^3 CHO_2			1 (0.05 equiv), HOAc (0.25 equ NaOAc (0.5 equ diethyl ether 4.0–40 h 22 °	uiv) uiv)	MeO ₂ C R ¹ R ² 3 R ³	
	entry	R^1	R ²	R ³	yield (%) ^a ee of 3 (%) ^b	
Δ	1	Ме	н	Ph	96	99	
	2	Me	н	<i>p</i> -Br-Ph	92	99	
	3	Me	н	<i>p</i> -Cl-Ph	93	98	
	4	Ме	н	<i>p</i> -Me-Ph	95	99	
	5°	Me	н	<i>p</i> -OMe-Ph	75	99	
catalyst) cocatalyst)	6	Me	н	<i>m</i> -Cl-Ph	94	99	
ocatalyst)	7	Me	н	O-CH ₂ -O-Ph	87	>99	
	8	Me	Me	Ph	80	>99	
20 22 24	9	Me	Me	<i>p</i> -Br-Ph	94	>99	
.0 22 24	10	Me	Me	<i>m</i> -Cl-Ph	94	>99	
	11°	Ph	н	Ph	80	99	
ial role	12°	Ph	н	<i>p</i> -Cl-Ph	82	>99	
	13°	Ph	н	<i>p</i> -Br-Ph	71	99	
	14 ^c	Ph	н	<i>m</i> -Cl-Ph	74	>99	

a Yields refer to isolated yields after column chromatography. *b* Final yields are obtained after 48 h, when there is no further conversion. ^aYields refer to isolated yields after column chromatography. ^b ee was determined by chiral HPLC. ^c 10 mol % of **1** was applied.