Using the photo-Fries reaction as a photochemical probe to quantify the cage effects

 of ionic liquids Amy E. Keirstead, Department of Chemistry and Physics, University of New England, Biddeford ME 04005The cage effect of a solvent or material is a measure of restriction placed on solute molecules by the solvent cage and describes how effectively the species can escape the solvent cage. A large cage effect gives rise to a high yield of in-cage products whereas a high yield of cage escape products is found for systems with a small cage effect. The cartoon in Figure 1 outlines cage escape for a pair of photochemically generated radicals.

In this work we investigate the cage effect of ionic liquids (Figure 2, top right), an interesting class of "green" materials that have found application as solvents for synthesis and catalysis, hosts for molecular electronic devices, and electrolytes in dye-sensitized solar cells. If ionic liquids are found to have a large cage effect, this could dramatically alter the product distribution or catalytic activity in synthetic systems and limit the efficiency of a photovoltaic or electronic device.

We use the photo-Fries reaction (Figure 2) as a photochemical probe reaction and use gas chromatographymass spectrometry to quantify the photoproduct distribution, and hence ratio of in-cage to cage-escape products. Our early results (Figure 3) suggest a significant increase in the ratio of in-cage: cage-escape products when the reaction is carried out in ionic liquid media compared to molecular solvent (hexane). This result suggests a significant cage effect for ionic liquid media.

Figure 2

 $\underset{\text { (repre }}{[8}$
[BMIM][BF ${ }_{4}$] (representative ionic liquid)
$\uparrow \mid$ hv (photo-Fries reaction)

