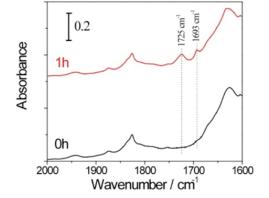
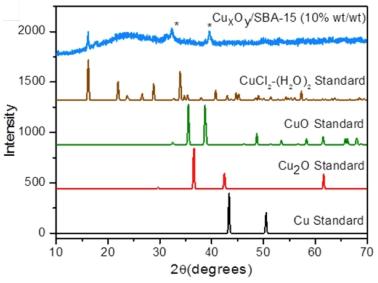

Novel CO₂ reduction catalysts driven by visible light


Feng Jiao

Department of Chemical and Biomolecular Engineering, University of Delaware Email: jiao@udel.edu


Reduction in greenhouse CO_2 emissions from fossil fuel utilization is a critical issue for our society and will soon become a major challenge of chemical industry. Converting the CO_2 produced from refineries and petrochemical plants to liquid fuels through artificial photosynthesis is an ideal solution, but imposes major technological challenges.

TEM images $Cu_xO_y/SBA-15$ catalyst reduced at 250°C: (a) 1.0% wt, (b) 4.8% wt, and (c) 10% wt.

FTIR spectra for photocatalytic CO₂ reduction using CuO_x/SBA-15 as the catalyst

PXRD patterns for 10% wt Cu catalyst before H₂ reduction

Photocatalytic CO₂ reduction has been confirmed by FTIR studies.