Specific Ion Effects on the Interfacial Properties at the Hydrophobic/Aqueous Interfaces

Yanjie Zhang, Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807

Vanessa P. McCaffrey, Department of Chemistry, Albion College, Albion MI 49224

The Hofmeister series ranks the relative influence of ions on the physical behavior of a wide variety of aqueous processes. This behavior is more pronounced for anions than cations and is quite general. The typical order for the anion series is as follows:

$CO_3^{2-} > SO_4^{2-} > S_2O_3^{2-} > H_2PO_4^- > F^- > Cl^- > NO_3^- > Br^- > I^- > SCN^-$

Although the Hofmeister series is a general recurring trend in aqueous solutions, the molecular-level mechanisms of the Hofmeister effects have remained elusive for over 120 years. Our research uses a simple model, the temperature-induced phase behaviors of poly-(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO), to further explore the nature of polymer-anion interactions.