Novel Nanocomposite Materials for Efficient Photocatalytic Reduction of CO₂ to Fuels

 CO_2, H^+

➤ CO. CH4.

Ying Li, Mechanical Engineering Department, University of Wisconsin-Milwaukee

We aim to develop novel nanocomposite materials to convert CO₂ and H₂O to fuels (e.g., CO and CH₄) under UV-visible illumination

- Cu, Ag, or Ce modified TiO₂ nanoparticles as the photocatalysts
- Ordered mesoporous SBA-15 as the catalyst support
- In-situ DRIFTS analyses to understand the reaction mechanism

SEM of TiO₂ microsphere

TEM of Ag/TiO₂

TEM of Ce-TiO₂/SBA-15

Product Yield (µmol/g TiO2)

In situ DRIFT spectra of ¹³CO₂ interaction on the surface of Cu(I)/TiO_{2-x}

Conduction Band

hv

Rate of CO₂ reduction to CO and CH₄ using Ce-TiO₂/SBA15 catalyst under **UV-vis illumination**

0.03Ce 1Ti 2Si