Testing Hypotheses of Black Shale Deposition in the Late Devonian Catskill Basin, Watkins Glen State Park, New York

Nan Crystal Arens

Hobart & William Smith Colleges

Hypotheses:

Predictions:

- 1. Transgression-regression cycles under tectonic control and independent of eustatic sea level change.
- 2. Black shale intervals uncorrelated with events (e.g., Kellwasser) outside of the basin.
- 3. No δ^{13} C excursion.

Ocean overturn

4.Evidence of climate cooling.

Chemocline rise

- 5. Evidence of continuous warm climate.
- 6. Loss of diversity among H_2S sensitive marine organisms.
- 7. Loss of diversity and/or indications of stress among terrestrial organisms.
- 8. Positive excursion in $\delta^{13}C_{carb}$.
- 9. Positive excursion in $\delta^{13}C_{org}$ of same magnitude as $\delta^{13}C_{carb}$.
- 10. Black shale intervals correlated with global events (e.g., Kellwasser).

Rise of Forests

Intensified Pedogenesis
Increased nutrient
flux into oceans
Eutrophy
Anoxia and increased
organic carbon burial
Black Shale

- 11. Positive excursion in $\delta^{13}C_{carb}$.
- 12. Larger positive excursion in $\delta^{\text{13}}\text{C}_{\text{org}}.$
- 13. High and continuous diversity of land plants.

Observations & Preliminary Conclusions:

No positive excursions were observed in $\delta^{13}C_{org}$ suggesting that the mechanism producing black shales during the Kellwasser and related oceanographic events did not produce black shales in the Catskill Basin. Furthermore, the absence of a positive excursion in $\delta^{13}C_{org}$ suggests that fertilization by land plants did not produce black shales.

Continuing Investigation:

Palynofacies analysis will assess the degree of terrestrial sedimentary input throughout the section. If black shales are produced in local down-drop basins produced by regional tectonic activity, we expect to see a negative corelation between terrestrial input and organic carbon burial.