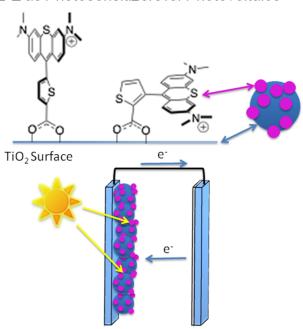
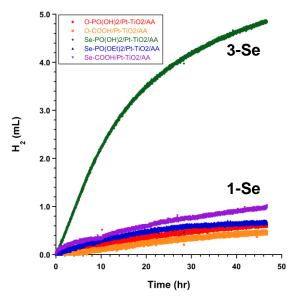
Engineering the Photosensitizer-Semiconductor Interface in Dye-Sensitized Solar Cells

Michael R. Detty, University at Buffalo

#48730-ND10


The chalcogenorhodamine dyes shown below were found to be useful photosensitizers for the generation of hydrogen from water in homogeneous (Figure 1) and heterogeneous (Figure 2) systems and for the generation of electricity in dye-sensitized solar cells (Figure 3).


Figure 1. Dyes 5-E as Photosensitizers for the Evolution of Hydrogen with a Homogeneous Cobalt Catalyst
Singlet oxygen yields (Q) in MeOH

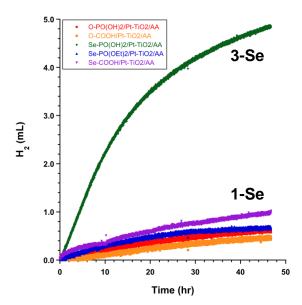

name	5-O	5-S	5-Se
Q	0.05 ± 0.03	0.17 ± 0.01	0.67 ± 0.01
4000			
2 3000	R N N R		
2000 - 5-s			R N Co N R
1000	-1/	Eosin Y	CI
			Cobalt catalyst
			odiaryst
Time (hrs)			

Figure 3. Chalcogenorhodamine Dyes **1-E** and **2-E** as Photosensitizers for Photovoltaics

Figure 2. Dye **3-Se** as a heterogeneous photocatalyst for the generation of solar hydrogen

