

Improved lines positions for the (1,1) band of the $b\ 1\Sigma^+$ - $X\ 3\Sigma^-$ transition of O_2

Leah C. O'Brien, Department of Chemistry,
Southern Illinois University Edwardsville, Edwardsville, IL 62026

INTRODUCTION

Molecular oxygen, O_2 , is an essential life-supporting component in our atmosphere and oceans. Both the concentration and the distribution of gas-phase oxygen in the atmosphere are of interest to many science disciplines, including planetary scientists. We report improved line positions for the (1,1) vibrational band of the $b\ 1\Sigma^+$ - $X\ 3\Sigma^-$ transition of O_2 , recorded using intracavity laser absorption spectroscopy.

EXPERIMENTAL METHOD

The absorption spectra were recorded using intra-cavity laser spectroscopy (ILS). A plasma discharge was used to enhance absorption from $v=1$ in the ground state of oxygen.

RESULTS AND DISCUSSION

A portion of the spectrum with $^R R$ - and $^R Q$ -branch spectral features is shown in Figure 1. High lines of the (0,0) band of this transition can be seen in the spectral region of the (1,1) band, and the $^P P(29)$ and $^P Q(28)$ lines of the (0,0) band are labeled in Figure 1. A total of 66 lines with J 's up to 36 were fitted in this analysis. Molecular constants obtained from the fit are presented in Table 1 and compared with previous literature values. In summary, improved lines positions for the (1,1) band of the $b\ 1\Sigma^+$ - $X\ 3\Sigma^-$ transition of O_2 . Additionally, we report a new method of producing vibrationally hot molecules for use in absorption spectroscopy of stable gas phase molecules.

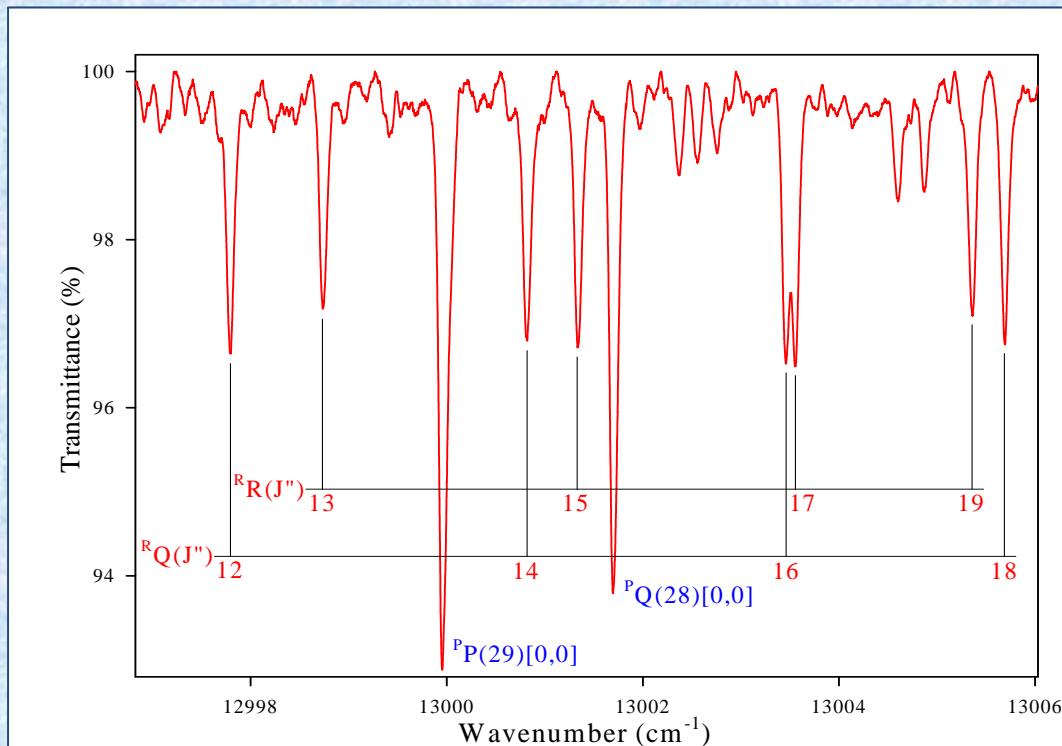


Figure 1. A portion of the the (1-1) band of the $b\ 1\Sigma^+$ - $X\ 3\Sigma^-$ transition of O_2 (in cm^{-1}): $P_{\text{discharge}}=4.70$ torr, $P_{\text{background}}=4.26$ torr, and $t_g=200$ μsec .

Table 1. Molecular Constants for the $v=1$ of the $b\ 1\Sigma^+$ state of O_2 (in cm^{-1}). The constants of the $X\ 3\Sigma^-$ $v=1$ state were held fixed to the values of Rouillé *et al.* [16].

Molecular Constant	E_1	B_1	$D_1 \times 10^5$
This Work	14526.98928(84)	1.3729747(37)	0.54157(31)
Ref. 2	14525.6602	1.373054	0.5409