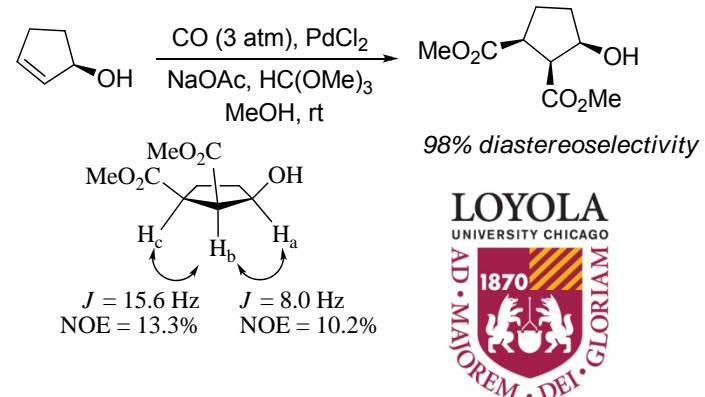

Palladium(II)-Catalyzed Asymmetric Synthesis of α -Substituted Ketones

Daniel P. Becker, Department of Chemistry, Loyola University, Chicago, IL 60626


The research has as its ultimate goal to explore the enantioselective reaction of enols in palladium(II)-catalyzed systems and the development of a practical and straightforward asymmetric synthesis of α -substituted ketones. We have developed asymmetric α -hydroxylation, α -bromination, and α -azidation reactions in mixed aqueous media using a bimetallic achiral Pd(II) catalyst with triketone and chiral bidentate bridging groups as well as with mono-metallic palladium catalysts with chiral bidentate ligands.

Run/ ID	R	R'	% ee ^e	$[\alpha]^{20}_{\text{D}}$
1	$-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$		67	14.0
2	CH_3	Ph	68	62.3
3 ^b	CH_3	Ph	82	69.8
4 ^c	CH_3	Ph	51	46.2
5	CH_3CH_2	Ph	71	23.7
6	Ph	Ph	87	141.8
8 ^d	Ph	Ph	85	-139.9
9	CF_3	Ph	89	-7.8
10	2-furyl	2-furyl	91	59.2
11	3,5-di-fluoroPh	3,5-difluoro	90	46.8

Independently, we have explored chirality transfer from chiral allylic alcohols utilizing the palladium-catalyzed olefin dicarbonylation reaction for the preparation of molecules with three contiguous chiral centers.

Preparing people to lead extraordinary lives