

USANS Study of Porosity and Water Content in Sponge-Like Hydrogels

Ronald C. Hedden, Chemical Engineering, Texas Tech University, Lubbock, TX 79409

1 Our study examined swelling behavior of porous, sponge-like hydrogels of poly(hydroxyethylmethacrylate). Micrometer-scale pores were introduced by leaching out 40 to 80 mass % of a water-soluble, polymeric porogen.

Water-swollen state Dry, extracted state

Low-vacuum SEM image,
partly hydrated state

2 Gels were swollen in D₂O and characterized by ultra-small angle neutron scattering (USANS) using the BT5 Perfect Crystal Diffractometer at the NIST Center for Neutron Research.

4

5

3 An analytical model was developed which relates the neutron scattering invariant to chemical composition and swelling behavior.

$$\phi_{ls} = \frac{M_s - M_{ex} \hat{Q}_h}{M_s + (\rho_{D2O} M_{ex} / \rho_p) - M_{ex}}$$
$$Inv = 2\pi^2 \left(\frac{\rho_{D2O} / \rho_p}{(\rho_{D2O} / \rho_p) + (\hat{Q}_d - 1)} \right)^2 (SLD_{D2O} - SLD_p)^2 \phi_{ls} (1 - \phi_{ls})$$

M_s = gel's swollen mass in H₂O ; M_{ex} = gel's dry mass after extraction

\hat{Q}_h = gel's swollen mass in H₂O (*excluding* water in pores) divided by its dry mass, M_{ex} .

\hat{Q}_d is defined similarly, except for swelling in D₂O

ρ_{D2O} , ρ_p : mass densities of D₂O and polymer

SLD_{D2O} , SLD_p : neutron scattering length densities of D₂O and polymer

ϕ_{ls} : volume fraction of pores, water-swollen state

Inv: neutron scattering invariant, $Inv = \int_0^\infty q^2 I(q) dq$

The neutron invariant analysis allowed us to calculate the pore volume fraction in the water-swollen state and the water content within the gel phase, important quantities which are *not readily accessible to other experimental techniques*.

New synthetic methods were developed to produce porous elastomers using electrospun polymer microfibers as a sacrificial porogen phase. Future USANS studies will examine effects of stretching on pore dimensions and volume fraction.

