

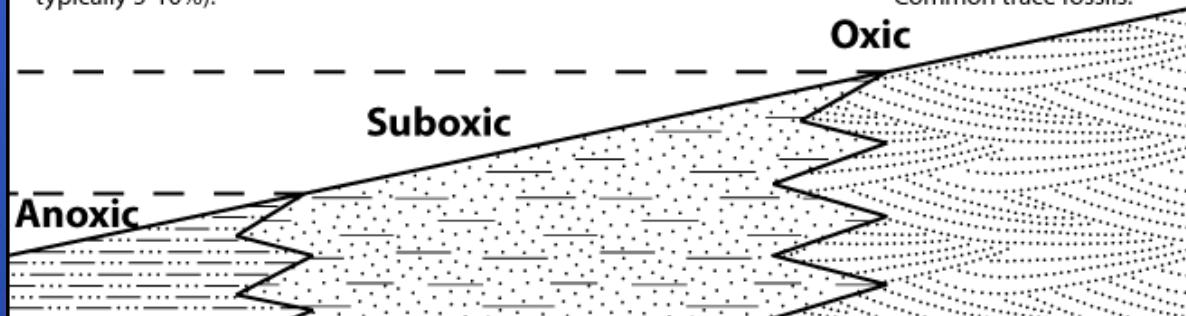
Productivity and Environmental Conditions Following the Permian-Triassic Mass Extinction: Lower Triassic Rocks from the Western Canada Sedimentary Basin

Adam D. Woods Department of Geology, CSU Fullerton, Fullerton, CA 92834-6850

- Trace element analysis and determination of %TOC and %TIC from sedimentary rocks deposited in the Western Canada Sedimentary Basin during and following the Permian-Triassic mass extinction suggest the following:
 - Primary productivity collapsed at the Permian-Triassic boundary, but recovered rapidly, within a few 10's of thousands of years.
 - Primary productivity remained robust through much of the remainder of the Early Triassic based on high %TOC values and elevated levels of Cu, Ni and Zn compared to World Shale averages.
 - Widespread anoxic conditions in deep water environments was likely the result of high levels of primary productivity.
 - High rates of primary productivity likely resulted in stresses that limited recovery to a narrow habitable zone along northwestern Pangea during the Early Triassic

Depositional Model for Lower Triassic Rocks of the WCSB

Basinal Facies


Laminated silty shale. Anoxic. Evidence for high primary productivity and good potential for preservation of organic matter (TOC values typically 5-10%).

Turbiditic Sands

Interbedded sandy turbidites and silty shale. Anoxic to suboxic. Moderate potential for preservation of organic matter (TOC values typically 2-3% for sandy units and 5-10% for silts and shales). Rare trace fossils.

Lower Shoreface

Hummocky cross-stratified sandstone. Oxygenated, low potential for preservation of organic matter (TOC values up to 2%). Common trace fossils.

