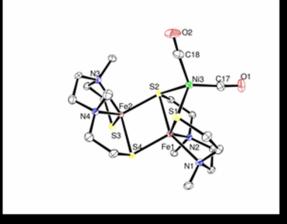

Rational Design and Synthesis of Structural Analog Complexes of the Active Site of Ni-Fe Hydrogenases

Jianfeng Jiang, Department of Chemistry, Yeshiva University, New York, NY 10033


Synthesis of key intermediates: fac-[Fe(CN)(CO)₃I₂]¹⁻ and fac-[Fe(CN)₂(CO)₃I]¹⁻ have been isolated from the substitution of iodide by 1 or 2 equivalents of cyanides from fac-[Fe(CO)₃I₃]¹⁻. Both are excellent intermediates for the preparation of structural analog complexes of the active sites of hydrogenase..

Synthesis of thiolate bridging Ni-Fe dimer: $[(dppe)Ni(\mu-SEt)_2Fe(CN)_2(CO)_2]_6$ and $(dppe)Ni(\mu-pdt)Fe(CN)_2(CO)_2$ as Ni-Fe hydrogenase active sites structural analogs were synthesized by the reaction of fac- $[Fe(CN)_2(CO)_3I]^{1-}$, thiolates and $Ni(dppe)CI_2$.

Reaction of Ni(dsdm)Fe(CN)₂(CO)₂ with hydride: at room temperature, this reaction leads the decomposition of the Ni-Fe dimer and ligands reshuffle. [Fe(dsdm)]₂Ni(CO)₂ was isolated and structurally characterized.

