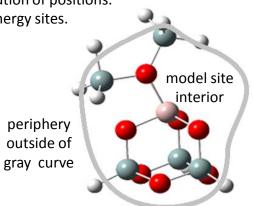
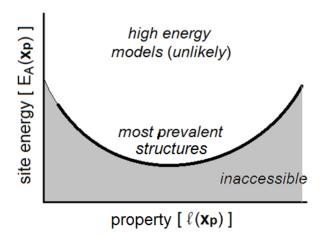
Objective: develop a systematic *ab initio* modeling strategy to understand structure-property relationships in *amorphous* catalysts and supports

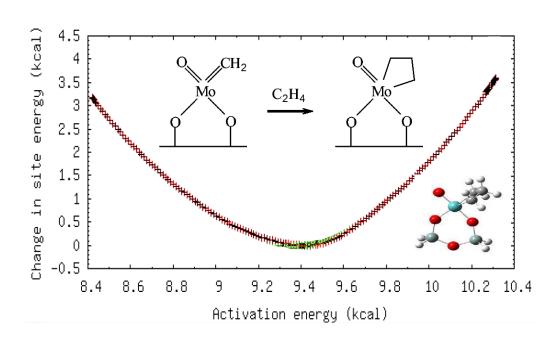
principles for modeling amorphous supports with cluster models

- (1) support is a solid so peripheral atoms should be immobile.
- (2) peripheral atom positions (x_p) influence chemical properties of the site.
- (3) peripheral atoms arranged in continuous distribution of positions.
- (4) low energy sites are more prevalent than high energy sites.

(1-4) define the most prevalent model sites for each value of each property. Find them with sequential quadratic programming.


$$\begin{split} g_{p,eff}^{A} &= g_{p}^{A} - H_{pa} H_{aa}^{-1} g_{a}^{A} \\ H_{pp,eff}^{A} &= H_{pp}^{A} - H_{pa} H_{aa}^{-1} H_{ap} \end{split}$$


$$\Delta x_p = -\mathbf{M} g_{p,eff}^A - \Delta \ell \mathbf{e}$$


$$\mathbf{e} = -\frac{H_{pp,eff}^{A}^{-1} \Delta g_{p,eff}}{\Delta g_{p,eff}^{T} H_{pp,eff}^{A}^{-1} \Delta g_{p,eff}}$$

$$\mathbf{M} = H_{pp,eff}^{A}^{-1} - \frac{H_{pp,eff}^{A}^{-1} \Delta g_{p,eff} \Delta g_{p,eff}^{T} H_{pp,eff}^{A}^{-1}}{\Delta g_{p,eff}^{T} H_{pp,eff}^{A}^{-1} \Delta g_{p,eff}}$$

Example: Olefin metathesis by Mo(SiO₂) subtle variations in the SiO₂ model alter the activation energy for a key step. Goldsmith, Peters, in prep.

