

Determining conformational preferences by NMR of simple molecules

John D. Roberts, Crellin Laboratory, Calif. Inst. of Tech., Pasadena, CA 91125

Conformers of simple organic molecules such as succinic acid, $\text{HO}_2\text{C}-\text{CH}_2-\text{CH}_2-\text{CO}_2\text{H}$ undergo rotation about their central CH_2-CH_2 bond with incredible speed, millions to billions times per second and yet we often speak of these rapidly rotating molecules of favoring particular spatial arrangements, "conformations", as though they could be separated and treated as stable entities. How can we measure the preferences for each of the different conformers despite the enormity of their speeds of rotation? First, what are conformers and how rotation turns one into the other.

Representations follow of the conformations as chemists have made models of them using simple ball-and-stick for more than 125 years. On the far left, is a pseudo-three-dimensional, so-called "sawhorse" drawing showing an oblique view of what we call the trans conformer with a curved arrow showing where rotation occurs about the central C-C bond. The other three drawings are views along the axes of the C-C bonds to show how each 120° rotation changes from one conformer to the next.

NMR spectrum of hydrogens of succinic acid

of the stopping intervals and color intensities