A Geochemical and Experimental Evaluation of Geologic CO_2 -SO₂ Co-Sequestration John P. Kaszuba, Dept. of Geology & Geophysics, University of Wyoming

Modeling studies hypothesize that co-injected SO_2 decreases pH in formation waters at least one unit more than acidification by CO_2 alone.

Hydrothermal experiments evaluate CO_2 -SO₂-brine-rock reactions and processes in carbonate and siliclastic reservoirs.

Injection of supercritical CO_2 decreases pH, as expected from dissolution of CO_2 and creation of carbonic acid. Injection of supercritical CO_2 + 500 ppm SO_2 produces similar pH decrease.

Supercritical CO_2 and reservoir rock determine pH, co-injected SO_2 does not appreciably affect buffering capacity of the system.

Anhydrite precipitates in response to injection of supercritical CO₂-SO₂ and provides a mineral trap for sulfur.

