
Induction in Chemistry: Introducing Electrostatic Bonds Thomas Keyes, Chemistry Department, Boston University, Boston MA 02215

With a careful treatment of polarization at short range, classical methods describe a surprising number of phenomena generally considered to require quantum mechanics.

Classical cluster energies of the POLIR water potential approach high-level quantal results (CCSD(T)) for (H₂O)₆, and are superior to those from existing polarizable potentials.

The energy and structure of hexa-coordinated Cu²⁺ are described by classical electrostatic bonds

IR solution spectra from the classical dipole correlation: Mg²⁺ has a large redshift and Ca²⁺ is broad and weakly blueshifted, in agreement with experiment. "Synthetic" solutes correctly obey: Mg⁺¹, hydrophilic, redand blueshifted shoulders; Mg⁰, weakly hydrophilic, slight blueshift; Cl^{+0.1}, hydrophobic, slight redshift.