Droplet motion in porous media or microfluidic channels with constrictions

Panagiotis Dimitrakopoulos Department of Chemical and Biomolecular Engineering University of Maryland, College Park, MD 20742

The study of the droplet motion through a three-dimensional constriction in a circular or rectangular channel is a problem encountered in a broad range of applications including the enhance oil recovery and microfluidic devices.

Utilizing our three-dimensional spectral boundary element algorithm, we study the motion, deformation and critical blocking conditions of a viscous droplet in a channel at low-Reynolds-number flows.

We investigate the effects of several parameters affecting the drop dynamics as it is squeezed through the constriction including droplet size, size of constriction and asymmetrical constriction shapes.

