Rare-Earth Antimony Suboxides as Novel Thermoelectric Materials

Yurij Mozharivskyj, Department of Chemistry, McMaster University, Hamilton, ON, Canada, L8S 4M1

1) RE_3SbO_3 and $RE_8Sb_{3-\delta}O_8$ antimonide oxides (RE is a rare-earth element)

Two families of novel narrow band-gap semiconducting suboxides with the RE_3SbO_3 and $RE_8Sb_{3-\delta}O_8$ compositions (RE = La, Sm, Gd, Ho) have been discovered. Their synthesis was motivated by attempts to open a band gap in the semimetallic *RESb* binaries through a chemical fusion of *RESb* and corresponding insulating RE_2O_3 . This strategy worked for both families of phases as the band gap opened between the valence band dominated by the Sb states and the conduction band composed primarily of the *RE* states.

 $\textit{RE}_3\textit{SbO}_3$ and $\textit{RE}_8\textit{Sb}_{3\text{-}\delta}\textit{O}_8$ are semiconducting

 RE_3 SbO₃ and RE_8 Sb₃₋₈O₈ contain similar A and B blocks

2) Layred (RESb)_n(REOC_{0.25}) antimonide oxycarbides

Layered oxycarbides $(HoSb)_{1.25}(HoOC_{0.25})$ and $(DySb)_{2.5}(DyOC_{0.25})$ consist of two and four layers of HoSb and DySb and one layer of $HoOC_{0.25}$ and $DyOC_{0.25}$, respectively, stacked along the *z* direction. To our knowledge, such composite structures are unique.

