

Rare-Earth Antimony Suboxides as Novel Thermoelectric Materials

Yurij Mozharivskyj, Department of Chemistry, McMaster University, Hamilton, ON, Canada, L8S 4M1

1) RE_3SbO_3 and $RE_8Sb_{3-\delta}O_8$ antimonide oxides (RE is a rare-earth element)

Two families of novel narrow band-gap semiconducting suboxides with the RE_3SbO_3 and $RE_8Sb_{3-\delta}O_8$ compositions (RE = La, Sm, Gd, Ho) have been discovered. Their synthesis was motivated by attempts to open a band gap in the semimetallic $RESb$ binaries through a chemical fusion of $RESb$ and corresponding insulating RE_2O_3 . This strategy worked for both families of phases as the band gap opened between the valence band dominated by the Sb states and the conduction band composed primarily of the RE states.

RE_3SbO_3 and $RE_8Sb_{3-\delta}O_8$ are semiconducting

RE_3SbO_3 and $RE_8Sb_{3-\delta}O_8$ contain similar A and B blocks

2) Layered $(RESb)_n(REOC_{0.25})$ antimonide oxycarbides

Layered oxycarbides $(HoSb)_{1.25}(HoOC_{0.25})$ and $(DySb)_{2.5}(DyOC_{0.25})$ consist of two and four layers of HoSb and DySb and one layer of $HoOC_{0.25}$ and $DyOC_{0.25}$, respectively, stacked along the z direction. To our knowledge, such composite structures are unique.

