Rational Design of Zeolite Nanocrystals and Membranes at Different Length Scales for Carbon Dioxide Separation
Moises A. Carreon, Department of Chemical Engineering. University of Louisville

The proposed research focuses on the development of novel *self-assembly methods* for the molecular design of zeolite membranes displaying controlled crystal size at different length scales, controlled surface properties, and tunability of pore architectures for CO₂/CH₄ separation. Our results on SAPO-34 seeds demonstrate the benefits of one of the proposed self-assembly approaches in developing seeds displaying surface areas as high as 700 m²/g, small crystal sizes in the 0.5-0.7 μm range with narrow size distribution and unprecedented high CO₂/CH₄ sorption capacities. The small crystal size and remarkable high CO₂/CH₄ sorption capacities of the synthesized SAPO-34 seeds translated into high CO₂/CH₄ separation selectivities (>250), while the >5 μm thin membranes synthesized with these seeds led to CO₂ permeances as high as 1x10⁻⁶ mol/m² s Pa). In addition, we have recently developed novel metal organic framework membranes (ZIF-8) able to separate CO₂ from CH₄.

Continuous zeolite SAPO-34 and Metal organic framework ZIF-8 membranes have been synthesized in our lab. 

SAPO-34 membranes effectively separate CO₂/CH₄ mixtures