Chromium Oxides Supported on Transition-Aluminas for Catalytic Dehydrogenation of Propane

Sanwu Wang, Department of Physics & Engineering Physics, The University of Tulsa, Tulsa, OK 74104.

Chromium/transition-aluminas are well-known catalysts in petrochemical industry for the production of alkenes via dehydrogenation of alkanes. However, the atomic-scale mechanism of the role of Cr/transition-aluminas in the catalytic reactions still remains open.

First-principles quantum mechanical calculations for the catalytic chemical reaction of the dehydrogenation of a selected alkane, propane (C_3H_8), with the presence of Cr supported on γ -alumina (γ -Al₂O₃) have revealed that the dispersed chromium oxide species (CrO₃ and CrO₄) with the active oxygen sites play a key role in the dissociation of alkanes.

