Friction at the nanoscale

Izabela Szlufarska, Department of Materials Science and Engineering, University of Wisconsin-Madison

Motivation: Understanding of fundamental mechanisms of friction and wear of ultrananocrystalline diamond (UNCD). Promising material for coating drill bits for oil recovery.

Approach: Massively parallel molecular dynamics simulations using realistic potentials (background picture)

Discovered friction laws at the nanoscale, Determined dependence of friction force on load and contact area.

- We demonstrated that behavior of nanoscale contacts is described by roughness theories instead of continuum mechanics
- •Friction force is controlled by the short range chemical interactions. $F_f = \tau \cdot A_{real} = \tau \cdot N_{at} \cdot A_{at}$ $F_f = \mu \cdot L$

Demonstrated a transition from a linear to sublinear friction – load dependence. Explained previously reported experiments.

$$F_f = \mu \cdot L$$
 Increase adhesion $F_f(L)$ sub-linear

Mo, Turner, and Szlufarska, Nature, 457, 1116 (2009)

Proposed a physical explanation for experimentally observed isotope effect on solid friction.

Motivation: Experiment reported friction reduction of 20% by passivating diamond with deuterium instead of hydrogen

D is chemically more stable than H on diamond surface

Surface coverage of H/D decreases during annealing

- The isotope effect on solid friction is consistent with differences in chemical stability of H and D on diamond
- A few percent of surface vacancies has a large effect on friction.

Mo, Müser, and Szlufarska, Physical Review B (in press)

Discovered friction laws at the nanoscale. Proposed a physical explanation of why deuterium lowers friction of diamond