A Rational Constraint Handling NMPC Method for Systems With Limited Degrees of Freedom

Output Constraints and Limited Actuation

Timur Aliyev Ed Gatzke

Department of Chemical Engineering University of South Carolina

September 25, 2008

Aliyev and Gatzke (USC)

NMPC for Limited DOF

Motivation

- Real systems often have limited degrees of freedom
 - Many saturated actuators
 - Many measurements
- Real processes have product quality constraints
 - Product must meet quality specifications
 - Error norm minimization not as relevant
- Real processes have safety limitations
 - Bounds on process for safe operation
- Real systems are nonlinear

Proposed Method

Create prioritized list of control objectives

 $|e_m(k) - c_i| \le s_i \ \forall k$

• Add soft constraint for highest priority objective and solve

$$\begin{array}{l} \min s_i \\ f\left(u^T \, \mathbf{y}^T \, \mathbf{e}^T\right) = 0 \\ A\left[\mathbf{e}^T \, \mathbf{s}_i\right] \leq \pm c_i \\ u^{LB} \leq u \leq u^{UB} \end{array}$$

Add hard constraint for that objective and repeat

$$\begin{split} \min_{\substack{f \left(u^T \, y^T \, e^T \right) = 0 \\ A \left[e^T \, s_{i+1} \right] \leq \pm c_{i+1} \\ u^{LB} \leq u \leq u^{UB} \, e^{LB} \leq e \leq e^{UB} \end{split}$$

 Use quadratic objective function once possible objectives are met

$$\min \sum_{k=1}^{P} e(k)^{T} \Gamma_{y} e(k) + \sum_{k=1}^{M} \Delta u(k)^{T} \Gamma_{\Delta u} \Delta u(k)$$

Aliyev and Gatzke (USC)

NMPC for Limited DOF

Illustration

Aliyev and Gatzke (USC)

NMPC for Limited DOF

September 25, 2008 4 / 6

Advantages and Disadvantages

- Accommodates qualitative control objectives rationally
- Hard constraints are always feasible
 - Feasible values provided by soft constraint problem
- For *n* objectives, must solve *n* NLP problems
 - Still better than mixed-integer optimization using branch-and-bound
 - Always have a viable (possibly sub-optimal) control move
- Not considering guaranteed stability formulation
 - Add terminal state constraint as objective
- Local NLP solves may not find the global solution
 - Global solution may actually be undesirable
 - Can use relaxation methods for bound

Application

Aliyev and Gatzke (USC)

NMPC for Limited DOF

September 25, 2008 6 / 6