TiO₂ **Nanoparticle Self-assembly onto Functionalized Carbon Nanotubes** Kathy Lu, Materials Science and Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

TEM images of: (a) as-is MWCNTs, (b) as-is MWCNTs with TiO₂ sol attachment, and (c) FT-IR spectra of MWCNTs and 120°C, 8 hr oxidized MWCNTs with TiO₂ sol attachment showing increasing TiO₂ attachment. TiO₂ sol decorated MWCNTs.

<u>5 m</u>

TEM images and EDS spectra of TiO₂ sol-decorated, oxidized MWCNTs from (a) 16.7 vol% TiO₂ sol solution, (b) 50 vol% TiO₂ sol solution showing increasing TiO₂ attachment.

High magnification image of TiO₂ sol-decorated MWCNTs.

Conclusions: 1. MWCNTs have been oxidized to produce acid functional groups on the surfaces.

- 2. TiO₂ sol has been successfully assembled onto MWCNT surfaces by a sol-gel method.
- 3. Surface modification of MWCNTs greatly improves the reactivity of MWCNTs with TiO₂ sol. The thickness of the TiO₂ sol layers increases with TiO₂ sol concentration.
- 4. The assembly mechanism is esterification between the –COOH groups of the oxidized MWCNT surfaces and the –OH groups of TiO₂ sol.