## Liquid transport mechanisms and surface interactions in nanoporous materials

Geoffrey D. Bothun, Department of Chemical Engineering, University of Rhode Island

In nanoporous materials, solvent-surface interactions can greatly influence liquid transport behavior. This behavior is difficult to quantify *a priori*. Our research examines solvent transport through ceramic membranes, as model nanoporous materials, to elucidate these interactions as a function of the chemical and physical properties of the solvent and membrane.

Based on solvent permeability, coupled with surface analysis, we have identified how chemisorption (e.g. 1-butanol) and solvation forces (e.g. cyclohexane) affect permeability as a function of membrane pore diameter (ca. 8, 18, and 33 nm). The reduction in the  $\alpha$ -parameter, shown in the graph below, demonstrates how the length scales for these interactions competes with the pressure driving forces at smaller pore sizes.



$$J = -\frac{1}{\eta} \alpha k_m^{water} \Delta P$$

## **Adsorption and orientation**

1-Butanol chemisorbs, reducing effective pore size and imparting hydrophobicity

## Solvation or oscillatory force

Cyclohexane physisorbs and packs near the surface, reducing pressure driving force