Chain dynamics in a semidilute polymer solution under steady shear Grzegorz Szamel, Department of Chemistry, Colorado State University, Fort Collins- CO 80523. Brownian Dynamics computer simulations of a bead-spring polymer model were performed in order to investigate single-chain dynamics in a semidilute solution. In equilibrium and at small shear rates the end-to-end vector correlation function <R(0).R(t)> exhibits double-exponential relaxation. With increasing shear rate it shows oscillatory relaxation, which hints at tumbling motion previously found in dilute solutions. The change of the relaxation mode of the end-to-end vector correlation function can be correlated with shear thinning of the semidilute solution. A real time analysis of the instantaneous values of the radius of gyration (R_g) , end-to-end distance (R_d) , orientation (Θ) , bonding normal stress (σ_{xx}^b) and nonbonding normal stress (σ_{xx}^{nb}) reveals correlations between fluctuations of these quantities.