Staudinger's life and career

Hermann Staudinger was born in Worms on the Rhine on March 23, 1881. Because he loved plants and flowers, he studied botany under Georg Klebs at the University of Halle after graduating from high school in 1899. His father suggested that he take some chemistry courses to get a better understanding of botany. Following this paternal advice, Hermann studied chemistry at the Universities of Halle, Darmstadt, and Munich. Chemistry became his main interest, and in 1903 at the age of 22, he took his Ph.D. under Daniel Vorländer in Halle.

He continued his research in organic chemistry in the laboratory of Johannes Thiele at the University of Strasbourg. During his investigations of carboxylic acid compounds, he discovered the highly reactive ketenes. In 1907, immediately after completing his postdoctoral work on the ketenes, Staudinger, at the age of 26, was appointed full professor at the Technical University of Karlsruhe, succeeding Roland Scholl. In Karlsruhe, he met eminent chemists such as Carl Engler and Fritz Haber, the later founder of high-pressure chemistry. At that time, Staudinger's research focused on ketene chemistry, reactions of oxalyl chloride, aliphatic diazo compounds, and preparation of butadiene and isoprene.

In 1912, Richard Willstätter, a world leader in organic chemistry, was appointed director of the newly founded Kaiser Wilhelm Institute for Chemistry in Berlin-Dahlem. The Eigenössische Technische Hochschule in Zürich offered his vacated chair in chemistry to Staudinger, who had just published his first book, Die Ketene. In Zurich, Staudinger continued his research on organic synthesis. In addition, he started to investigate physiologically active natural compounds. With Leopold Ruzicka (who would win the Nobel Prize for chemistry in 1939), Staudinger identified the structure of natural pyrethrins and developed synthetic routes to these important natural insecticides. During World War I, Staudinger also conducted research into ersatz compounds, substitutes for natural products that were in short supply during the war. In addition to the successful development of synthetic pepper, Staudinger and Thadaeus Reichstein carried out the difficult analysis of natural coffee aroma. Eventually, they came up with a credible ersatz aroma (furfuryl mercaptan with traces of methyl mercaptan), which was converted into an industrial process.

During this period, Staudinger was a typical practitioner of mainstream organic chemistry, which was already a highly sophisticated and respected science, led by chemists such as Adolf von Baeyer, Emil Fischer, and Richard Willstätter. By 1914, organic chemists had prepared more than 100,000 synthetic compounds used for various applications, including dyes and pharmaceuticals. Although not yet 40, Staudinger was considered a leading organic chemist. During the 1920s, Staudinger decided to leave the safe and prestigious haven of classical organic chemistry to embark on the stormy high seas of polymer science. Staudinger's pioneering spirit drove him to break away from the typical thinking of traditional organic chemists and to advance new and revolutionary ideas.

In 1926, he was appointed to a chair at Albert Ludwigs University in Freiburg, where he dedicated all his efforts to establishing and expanding the frontiers of polymer science. His research topics included natural rubber, cellulose, and synthetic polymers such as polyoxymethylene, polystyrene, and polyethylene oxide, which Staudinger considered to be model systems for the much more complex biopolymers. As well as making synthetic polymers, Staudinger tried to determine the molecular weights of polymers by using end-group analysis, by measuring the viscosity of polymer solutions, and by using electron microscopy analysis.

Hermann Staudinger always maintained a close relationship with industry to obtain funds for his research and to act as a technical consultant for firms interested in plastics and rubber. For many years, the "Förderverein" (association of supporters) of the Institute for Macromolecular Chemistry linked the research managers of the various companies who sponsored polymer research in Freiburg. Staudinger's internal group seminar, which started in 1950, attracted both academic and industrial chemists, and it soon became the largest German annual polymer meeting with more than 700 participants during the 1990s.

Staudinger's research was published in more than 800 publications amounting to more than 10,000 printed pages. He summarized his research in his autobiography, Arbeitserinnerungen (From Organic Chemistry to Macromolecules) published in 1970. His collected works, entitled Das Wissenschaftliche Werk von Hermann Staudinger (The Scientific Contributions of Hermann Staudinger), were edited by Magda Staudinger and published between 1969 and 1976.

For many years, Staudinger's textbook, entitled Die hochmolekularen organischen Verbindungen Kautschuk und Cellulose (The High Molecular Weight Organic Compounds Rubber and Cellulose), published in 1932 by Springer in Berlin, was the "bible" of many academic and industrial scientists. In 1947, Staudinger inaugurated the new journal Makromolekulare Chemie with Wepf & Company, publishers in Basel. For more than 50 years, this journal has provided an excellent forum for scientific exchanges and has promoted the expansion of polymer science.


next | back | home


Hermann Staudinger: Father of macromolecular chemistry | Staudinger's life and career | Political concerns
Industrial significance of polymer science | Macromolecules: A bridge between material sciences and life sciences
Hermann Staudinger's life and achievements | Landmark designation

Copyright ©2004 American Chemical Society. All Rights Reserved. 1155 16th Street NW, Washington DC 20036
202-872-4600, 800-227-5558