Herman Mark to 1940


Herman Mark was born in Vienna in 1895, the son of Herman Carl Mark, a physician, and Lili Mueller. Mark’s father was a Jew who converted to Lutheranism upon marriage.

The Vienna of Mark’s youth was an exciting and innovative city: Arnold Schonberg, Richard Strauss, Anton Bruckner, and Gustav Mahler expanded the boundaries of music; expressionist painters, such as Oskar Kokoschka and Egon Schiele, took art in new directions; and Sigmund Freud revolutionized concepts of the human mind. Many of the great thinkers and artists of turn-of-the-century Vienna were dinner guests at the Mark home. Other frequent guests were Theodor Herzl, founder of modern Zionism, and Chaim Weizmann, a scientist and author who was also a prominent Zionist. Herman Mark later wrote in his autobiography that “most of my father’s friends were Jewish.”
1

Several early stimuli apparently steered Herman Mark to science. One was a teacher, Franz Hlawaty, who made mathematics and physics understandable and “who influenced me greatly to select science for my career.”
2 At the age of twelve, the lure of science intensified when Mark and a friend, Gerhardt Kirsch, toured the laboratories of the University of Vienna at the invitation of Kirsch’s father, who taught science. The visit excited both boys and before long they turned their bedrooms into laboratories. Both had access to chemicals through their fathers, and they were soon performing experiments.

Mark graduated high school in 1913 with the intention of going to university to study science and obtain an advanced degree. But first he had to decide whether to fulfill his one year of mandatory military service in the Austrian army before continuing his education or serve after completing his studies. Mark chose the former course, enlisting as a private in the elite Alpine infantry. He was stationed in the mountains of South Tyrol, where he found military life rather agreeable. He became an accomplished mountaineer. He even found military food passable.

Mark was scheduled to leave military service in the summer of 1914, but “unfortunately, not only for me and my classmates but for all humanity, an unexpected terrible event took place.”
3 This was, of course, the assassination of the Austrian archduke in Sarajevo and the ensuing spiral of charge and counter-charge, threat and counter-threat, and troop movements that plunged Europe into world war.

Mark’s one year of service turned into more than five, most of which he spent on the front line. By his own account, Mark was wounded three times and received fifteen medals, and at the end of the war, in November 1918, he was captured on the Italian front. Mark later wrote that the commander of the prisoner of war camp “was very kind and civilized” and allowed the prisoners books. He learned Italian, French, and English and a smattering of Spanish, studied a little mathematics and physics, and organized a course in general chemistry. He eventually was freed and arrived home in August 1919, almost a year after the war ended.
4

Mark then enrolled in the University of Vienna, where he quickly made up for time lost during the war by completing three semesters a year and graduating in 1921 with a Ph.D. in chemistry. His mentor was the well-known organic chemist, Wilhelm Schlenk, who Mark described as “a researcher of great imagination and, at the same time, an inspiring teacher and educator.” Mark’s dissertation on the synthesis of pentaphenylethyl dealt with the new concept of free radicals, about which Mark later wrote: “The concept of ‘free radicals’ was not known in 1920 – well, perhaps in politics, but not in chemistry.”
5

In 1921 Mark went to the University of Berlin with Schlenk, who succeeded the Nobelist Emil Fischer. A year later Fritz Haber, discoverer of the process for synthesizing ammonia and director of the Kaiser Wilhelm Institute (now the Max Planck Institute), invited Mark to join the newly organized Institute for Fiber Research, founded within the Kaiser Wilhelm Institute for the study of the structure of fibers. Mark and his new wife, the former Marie (Mimi) Schramek, moved to Berlin-Dahlem to join a talented group of scientists who were working on the molecular structure of fibers using the new tools of X-ray diffraction and ultramicroscropy.

X-ray diffraction was in its infancy in the 1920s, but researchers quickly realized that it would be a valuable tool in the study of crystal structure. One of Mark’s first assignments at the Fiber Research Institute was to set up X-ray tubes. He soon became proficient in diffraction studies and, in his five years in Berlin-Dahlem, Mark became an expert crystallographer. His name appeared on more than fifty papers on the structure of metals, organic and inorganic compounds, and polymers.

Linus Pauling learned X-ray diffraction from Mark, and that knowledge led to Pauling’s seminal work on the structure of proteins.
6 Mark and Pauling, who had a lifelong relationship, first met when Mark was at the Institute for Fiber Research. It was in those years that Mark also met Albert Einstein, who was a frequent visitor at the Institute. Because Mark’s laboratory had intense and powerful X-ray tubes, Einstein asked Mark and his colleagues to verify the “Compton Effect,” the strongest confirmation yet of Einstein’s light quantum theory for which he won the Nobel Prize in Physics. As Mark later wrote, “we were able to confirm the existence of the wavelength shift observed by Compton.”7

Mark’s work at the Kaiser Wilhelm Institute brought him into contact with some of the greatest scientific minds of the age, but by 1926 he was faced with the choice of becoming a specialist in the X-ray investigation of solid substances or broadening his inquiries to attempt to draw practical consequences from his work. For Mark, the resolution to this dilemma appeared when Kurt Meyer of I.G. Farben offered him the assistant directorship of research at one of the company’s laboratories. Accordingly, Mark leapt at the chance “to apply [my] present knowledge of fibers to the production of improved species and at the same time continue my fundamental studies.”
8

After World War I Farben began to stress the manufacture of cellulose acetate and viscose and Meyer wanted his researchers to look into improving the properties of these fibers and to investigate the production of synthetic fibers. He hired Mark to direct the laboratory at Ludwigschafen in the study of fibers and films. For his part, Mark was not bashful and demanded of Meyer certain conditions for employment: a team of organic and physical chemists and physicists who would study the affect of structure on such things as rigidity, elasticity, melting point, and water absorption and an emphasis on the development of new materials.

Mark later commented that in his years at the Kaiser Wilhelm Institute he worked mainly with things such as X-ray tubes and high-voltage equipment and largely by himself. At Farben he now had to work with people, directing experiments and explaining to others what to do and how to do it. Though Mark found some of his new tasks onerous, Farben did allow him to pursue areas of research that, in his words, “could not possibly contribute to the business” of the company.
9 For example, Farben allowed Mark to add electron diffraction equipment, the use of which was for scientific purposes only.

In his years at Farben Mark worked on the first serious attempts at the commercialization of polystyrene, polyvinyl chloride, polyvinyl alcohol, and the first synthetic rubbers, Buna-N and Buna-S. Much attention was given to cellulose, for which Mark and Meyer suggested a structure by which all atoms were bound to one another in long chains by primary valence forces. This concept seemed to be a compromise between the association theory of molecular interaction and the concept of macromolecules. But in reality, Mark and Meyer accepted the latter, embracing in part the work of Hermann Staudinger. In his years at Farben, Mark published several other papers on cellulose, starch, and sugar, contributing to the emergence of polymer theory.

Mark helped make Farben a leader in manufacturing and distribution of new polymers and copolymers. In his six years at Farben, Mark listed eighty publications, including three books, and seventeen patents. These were also important years for Mark personally, as he and his wife now felt financially secure enough to have children. The family, which included two sons, lived in Mannheim along the Rhine. Hans Mark, born in 1929, describes the Mark family as “typical central Europeans” and that in these years “the Jewish assimilation was really going full swing.”
10

But while these may have been heady years for Mark professionally and personally, he was not oblivious to the looming Nazi threat. In his autobiography Mark describes that he frequently traveled by train from Mannheim to Frankfurt with colleagues for business meetings. At the train station each bought a newspaper, with most taking the Frankfurter Allgemeine Zeitung or the Mannehimer Nachrichten. Mark always bought the Nazi paper, the Voelkischer Beobachter. When asked why he read “this miserable newspaper,” Mark replied: “If I want to know what is happening in Gremany today, I shall read your newspapers, but I want to learn what will happen in Germany 4 or 5 years from now. Therefore, I read and believe the Voelkischer Beobachter.”
11

In 1932 Mark found out how right he was. That summer he was summoned to the office of the plant’s managing director, who said to him that since Hitler would soon take power in Germany, his position as a foreigner and the son of a Jewish father made Mark vulnerable. Even if Mark were not dismissed, promotion or advancement was impossible in the future. Therefore, the director suggested Mark look for another job, “outside of Germany.”
12

Mark heeded the advice and took a position as professor of physical chemistry at the University of Vienna, which brought him back to the city where he grew up. Mark’s stay in Vienna lasted six very successful years during which he designed a new curriculum in polymer chemistry and continued research in the field of macromolecules. But it also represented the first of several instances in the next decade in which Mark had to start over, both personally and professionally. This discontinuity in his career may well have prevented Mark from winning even higher accolades in his field than he achieved.
13

Austria was only a temporary haven for Mark. Austrian Nazis became more and more powerful and they prevented Jewish professors from teaching courses, burned cars owned by Jews, and engaged in running street battles with young Socialists. In 1934, Nazis assassinated Engelbert Dollfuss, chancellor of Austria and Mark’s old war friend. It was in the midst of the deteriorating political situation that Mark met C.B. Thorne, an official with the Canadian International Pulp and Paper Company, in Dresden in September 1937. At the meeting, Thorne offered Mark a position as research manager with the company in Hawkesbury, Canada, with the goal of modernizing its production of wood pulp for the purpose of making rayon, cellulose acetate, and cellophane. Mark replied that he was busy but that he would try to visit Canada the following year to help reorganize the company’s research facilities.

Mark wrote in his autobiography that “the word ‘Hawkesbury’ never left my mind and, in fact, in the end, it provided an escape route for me.”
14 In early 1938 Mark began preparing to leave Austria by delegating his administrative duties to colleagues. At the same time he clandestinely started to buy platinum wire, which he bent into coat hangers while his wife knitted covers so that the hangers could be taken out of the country. Mark’s son Hans estimates that the value of the platinum was roughly $50,000, a lot of money in the 1930s.15

Hitler’s troops invaded Austria in March and declared the Anschluss, the political union of Germany and Austria. Mark was quickly arrested, thrown in a Gestapo prison, and interrogated. He was released with a warning not to contact anyone Jewish. He was also stripped of his passport. By then Mark had had enough; he went directly to the Canadian embassy and cabled Hawkesbury that he was ready to come. He retrieved his passport by paying a bribe equal to a year’s salary, and he obtained a visa to enter Canada and transit visas through Switzerland, France, and England.
16

At the end of April, Mark and his family mounted a Nazi flag on the radiator of their car, strapped ski equipment on the roof, and drove across the border, reaching Zurich the next day. From there, the family traveled to England via France, and in September Mark, temporarily leaving his family behind, boarded a boat to Montreal. On board, Mark finished the English edition of his Physical Chemistry of High Polymers.

It was another example of starting over, this time with a factory that made paper and wood pulp. In fact, Mark never planned to stay long in Hawkesbury. His goal was to assist the company in modernizing and then move to an academic position. By 1939 Mark had accomplished the first part of the goal, overseeing the purchase of modern instruments and advanced equipment and training members of the research department in their use. Feeling his mission in Canada accomplished, Mark eagerly accepted an offer to become adjunct professor at the Polytechnic Institute of Brooklyn in the fall of 1940.

It is a sign of Mark’s temperament and personality that he held little anger or contempt for those who forced him out of Austria, or Germany six years earlier. He would describe the Nazis as “misguided” and scientists who supported them as “unfortunate.” But he bore few if any grudges and he was active immediately after the Second World War in reintegrating German and Austrian scientists into the world scientific community. He told his son Hans that “I went through a war that we lost, the Austrians lost, and I can’t be a believer in collective guilt.”
17


_____________________

1
Herman Mark, From Small Organic Molecules to Large: A Century of Progress, in Profiles, Pathways, and Dreams: Autobiographies of Eminent Chemists, ed. Jeffrey Seeman (Washington, D.C.: American Chemical Society, 1993), p. 9. For a fascinating account of growing up in an assimilated Viennese family in the pre-Hitler years, see George Clare, Last Waltz in Vienna, London: F.A. Thorpe, 1981.
2 Mark, From Small Organic Molecules to Large, p. 8.
3 Ibid., p. 10.
4 Ibid., pp 9-10; G. Allan Stahl, “Herman F. Mark: The Early Years, 1895-1926,” in G. Allan Stahl, ed., Polymer Science Overview: A Tribute To Herman F. Mark (Washington, D.C. American Chemical Society, 1981), pp. 8-11.
5 Mark, From Small Organic Molecules to Large, p. 15
6 Linus Pauling, “Herman F. Mark and the Structure of Crystals,” in Stahl, ed., Polymer Science Overview, pp. 93-99; Telephone interview with Hans Mark, conducted by Judah Ginsberg, June 6, 2003.
7 Mark, From Small Organic Molecules to Large, p. 31.
8 Ibid., p. 34.
9 Ibid., p. 37.
10 Hans Mark interview; again, see Clare, Last Waltz in Vienna.
11 Mark, From Small Organic Molecules to Large, p. 53.
12 Ibid., p. 62.
13 I am indebted to Murray Goodman for this insight about starting over and its affect on Mark’s career. Telephone interview conducted by Judah Ginsberg, May 29 and 30, 2003. Hans Mark says starting over never bothered his father, who just rolled with the punches.
14 Mark, From Small Organic Molecules to Large, p. 85
15 Hans Mark interview.
16 Interview with Herbert Morawetz, conducted by Judah Ginsberg, May 27, 2003.
17 Hans Mark interview.



 
   

next | back | home

Polymer chemistry—the formative years | Herman Mark to 1940 | The Polymer Research Institute | The Geheimrat |
Landmark designation | Further reading and acknowledgments

Copyright ©2007 American Chemical Society. All Rights Reserved. 1155 16th Street NW, Washington DC 20036
202-872-4600, 800-227-5558