Eben Horsford


Eben Norton Horsford was born in Moscow (now Livonia), New York, on July 27, 1818. Livonia is near Rochester and the young Horsford witnessed the completion in 1825 of the Erie Canal which opened up markets for the wheat grown in the interior of New York State. But by the 1830s, progressive farmers like Horsford's father recognized that intensive agriculture had led to soil depletion.1

Horsford entered the Rensselaer School (now Rensselaer Polytechnic Institute) in 1837, graduating a year later with a B.S. in civil engineering. For the next few years he worked for the New York State Geological Survey and taught a yearly lecture course on chemistry at Newark College in Delaware. In the early 1840s Horsford taught mathematics and natural history at the Albany Female Academy, where he fell in love with a student, Mary L'Hommedieu Gardiner. Her father refused to approve the marriage until Horsford's prospects improved, so the two did not marry until August 1847.

Horsford's work as geologist led to membership in the American Association of Geologists and Naturalists [forerunner of the Association for the Advancement of Science (AAAS)] and contact with John Webster, Professor of Medicine at Harvard College. Webster edited the first edition of Justus von Liebig's Organic Chemistry and Its Application to Agriculture and Physiology (1841). Horsford — according to his diary — read Liebig's book in 1842; at the same time, Horsford's associates urged him to go to Giessen, Germany, to study with Liebig for what would be Horsford's only formal education in chemistry. This expensive education abroad was made possible by Horsford's Albany friends, who paid for part of the trip and agreed to lend him money to cover the rest.

It was not uncommon for young Americans to travel to Europe in the 19th century for advanced scientific training, especially at German universities. Horsford's wish to study with Liebig especially proved apt as the German chemist's approach to science was practical, believing it should serve the public good. Liebig considered himself an agricultural chemist, an emphasis appealing to Americans living in what was a predominantly rural, agrarian society. Liebig had an international reputation, and through his writings and the students he trained, he exerted great influence over chemistry and agriculture in the United States.2

Horsford's first meeting with Liebig did not go well, with the American complaining that he was "received indifferently."3 But this changed early in Horsford's stay in Giessen, and soon the student was on intimate relations with the teacher and his family. No doubt this close connection eased Horsford's stay in Germany since Giessen was a small town of only about 8,000 people and the University of Giessen had only about 500 students, of whom sixty were studying chemistry. This group had an international flavor, due entirely to the presence of Liebig on the faculty. Horsford wrote reverentially of attending his first lecture given by Liebig. The students rose when the professor entered the hall and "all was breathless." Horsford understood little of the German, but commented that Liebig's experiments were "executed with skill, dexterity, grace, and rapidity."4

Horsford spent two years in Giessen, studying the nutritive value — including the protein content — of various grains among other topics in organic chemistry. He did not stay long enough to receive a doctorate. Three reasons have been offered for his failure to obtain a degree: he did not want to incur more debts; his limited academic training prior to his sojourn in Germany; and he needed a job in order to marry. In any event, while in Germany, he was nominated for the Rumford chair at Harvard University. This academic post had been established by Count Rumford, an inventor and entrepreneur. With the strong support of Liebig and his old mentor Webster, Horsford was formally offered the professorship in February 1847, with an annual salary of $1,500.

The letter from Harvard's president, Edward Everett, offered Horsford a place in a soon-to-be established scientific school. Everett assure Horsford that his work was "not to be arduous," with his teaching responsibilities limited to two hours a day for four five days a week. "We shall endeavor," Everett wrote, "to give you as much time as possible for the pursuit of your investigations. You shall have a good laboratory, well furnished and a cordial welcome from all your associates."5 Later in 1847, the Rumford chair was transferred to the Lawrence Scientific School, created on a gift from Abbott Lawrence, and Horsford's salary doubled to $3,000 a year.

Now established as a professor, Horsford married Mary Gardiner on August 4, 1847. She died in 1856, leaving four daughters. In 1858, he married his sister-in-law Phoebe Gardiner; they had one daughter. During these years Horsford's career at Harvard progressed: he developed a laboratory for chemical analysis modeled on Liebig's facility in Giessen; and he became dean of the Lawrence Scientific School. He continued to correspond with Liebig; indeed, his research displayed the same interest in practical chemistry learned in Germany. For example, he studied the Boston water supply with emphasis on the effect of water on lead and iron pipes. He analyzed a sample of guano for William Marcy, the Secretary of State.

He continued his interest in the chemistry of nutrition, with early studies on potatoes and the condensation of milk. After 1854, his main preoccupation was to discover a substitute for yeast in baking bread.6 At the same time, Horsford entered into a business partnership with George Wilson, a former textile manufacturer, to establish the Rumford Chemical Works. As the business prospered, Horsford became less interested in teaching and university administration, and, in 1861, he resigned as dean of the Lawrence Scientific School, and two years later, he retired from the Rumford chair.

In 1861, Horsford published The Theory and Art of Breadmaking.7 During the Civil War he offered advice to the military, and he developed a "marching ration" composed of condensed meat and grain, which was ultimately unsuccessful.8 After the Civil War, he largely abandoned science in favor of a number of avocations, including trying to prove that the Vikings established a settlement near Boston. He could indulge his hobbies since he prospered from the chemical works he established with Wilson. As the father of five girls, Horsford spent part of his wealth on supplying Wellesley College with books and apparatus. During these years he continued to live in Cambridge, Massachuestts, until his death on January 1, 1893.


1 On Horsford's life, see Samuel Rezneck, "The European Education of an American Chemist, and Its Influence in 19th-Century America: Eben Norton Horsford," Technology and Culture 11 (1970): 366-88.

2 On Horsford in Giessen, see Margaret W. Rossiter, The Emergence of Agricultural Science; Liebig and the Americans, 1840-1880, New Haven, CT: Yale University Press, 1975); H.S. van Klooster, "Liebig and His American Pupils," Journal of Chemical Education, 33 (1956): 494-97; Paul R. Jones, "Justus von Leibig, Eben Horsford and the Development of the Baking Powder Industry," Ambix 40, Part 2 (1993): 65-74.

3 Rezneck, "European Education of an American Chemist," p. 370.

4 Ibid, p. 371.

5 Ibid, p. 381.

6 Liebig was also interested in baking powder, and there has been some dispute in the literature over who did what first. Paul Jones has established that Horsford deserves recognition for inventing baking powder, a view shared by Liebig himself. See Jones, "Justus von Liebig , Eben Horsford and the Development of the Baking Powder Industry," p. 73

7 Eben Norton Horsford, The Theory and Art of Bread-Making: A New Process Without the Use of Ferment (Cambridge, Mass: Welsh Bigelow & Co., 1861).

8 Samuel Rezneck, "Horsford's 'Marching Ration" for the Civil War Army," Military Affairs 33 (1969): 249-255.


 

next | back | home

 

History of Bread | Development of Baking Powder | Eben Horsford
Rumford Chemical Works | Count Rumford | Landmark Designation and Acknowledgments

Copyright ©2007 American Chemical Society. All Rights Reserved. 1155 16th Street NW, Washington DC 20036
202-872-4600, 800-227-5558