# **Instructions (Task 1)** - This examination has 10 pages for practical Task 1 and answer sheets. - You have 15 minutes to read this booklet before starting the experiments. - You have 2 hours 15 minutes to complete the practical Task 1. - Begin only when the START command is given. You must stop your work immediately when the STOP command is announced. A delay in doing this by 5 minutes will lead to cancellation of your practical exam. After the STOP command has been given, wait in your lab space. A supervisor will check your lab space. The following item should be left on your bench: The problem / answer booklet (this booklet) - You are expected to follow **safety rules** given in the IChO regulations. While you are in the laboratory, you must wear **safety glasses** or your own prescription safety glasses if they have been approved. You may use **gloves** when handling chemicals. - You will receive only **ONE WARNING** from the laboratory supervisor if you break safety rules. On the second occasion you will be dismissed from the laboratory with a resultant zero score for the entire practical examination. - Do not hesitate to ask your assistant if you have any questions concerning safety issues or if you need to leave the room. - You are allowed to work only in the space allocated for you. - Use only the pen provided, not a pencil, for writing the answers. - Use only the calculator provided. - All results must be written in the appropriate areas on the answer sheets. Anything written elsewhere will not be graded. Use the backside of the sheets if you need scrap paper. - Use the container labeled as "Used Vials" to dispose sealed vials with reaction solutions. - Use the container labeled as "Liquid Waste" to dispose the waste solutions. - Use the container labeled as "Broken Glass Disposal" to dispose the ampule fragments. - Chemicals and lab ware will be **refilled or replaced** without penalty only for the first incident. Each further incident will result in the **loss of 1 point** from your 40 practical exam points. - The official English version of this examination is available on request only for clarification. Code: GBR # Chemicals and Equipment (Task 1) # Chemicals (the actual labelling for each package is given in bold font) | | Risk Phrase <sup>+</sup> | Safety Phrase <sup>+</sup> | |---------------------------------------------------------------------------------------------|--------------------------|----------------------------| | ~2 M HCl,* solution in water, 50 mL in a | R34, R37 | S26, S45 | | bottle | | · | | ~0.01 M KI <sub>3</sub> ,* solution in water, 10 mL in a | | | | bottle, labelled " $I_2$ ". | | | | Acetone, $(CH_3)_2CO$ , $M = 58.08 \text{ g mol}^{-1}$ , | R11, R36, R66, R67 | S9, S16, S26 | | density = $0.791 \text{ g mL}^{-1}$ , $10.0 \text{ mL in a vial}$ | | | | <b>Acetone-</b> $d_6$ , (CD <sub>3</sub> ) <sub>2</sub> CO, M = 64.12 g mol <sup>-1</sup> , | R11, R36, R66, R67 | S9, S16, S26 | | density = $0.872 \text{ g mL}^{-1}$ , $3.0 \text{ mL}$ in a | | | | pre-scored ampule | | | <sup>\*</sup>See page 3 for definition of Risk and Safety Phrases. # Equipment - Kit #1 - One glass bottle filled with distilled water - Fifteen 20 mL screw-cap glass vials with Teflon-lined screwcaps - Ten 1 mL polyethylene transfer pipettes graduated in 0.25 mL increments (see drawing in the right). - Ten 3 mL polyethylene transfer pipettes graduated in 0.50 mL increments (see drawing in the right). - One digital timer (stopwatch) <sup>\*</sup> The exact molarity is indicated on the label, with the concentration given before the name of the substance. # Risk and Safety Phrases (Task 1) R11 Highly flammable R34 Causes burns R36 Irritating to eyes R37 Irritating to respiratory system R66 Repeated exposure may cause skin dryness or cracking R67 Vapours may cause drowsiness and dizziness S9 Keep container in a well-ventilated place S16 Keep away from sources of ignition S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice S45 In case of accident or if you feel unwell, seek medical advice immediately Task 1 # 18% of the total | a | b | c | d | е | f | g | Task 1 | 18% | |----|---|----|----|----|----|---|--------|-----| | 10 | 2 | 10 | 12 | 16 | 12 | 8 | 70 | | | | | | | | | | | | # Kinetics, Isotope Effect, and Mechanism of Iodination of Acetone Discoveries about the mechanisms of chemical reactions underlie advances in catalysis and synthesis. One of the most powerful tools for probing reaction mechanisms is the study of kinetics, because the way in which reaction rates vary with reaction conditions follows directly from the mechanism of reaction. A second powerful tool is the study of isotopically substituted molecules. While isotopes impart similar reactivity, there are slight differences in reaction rates as a function of nuclear mass. In this task you will use both kinetics and isotope effects to provide information about the iodination of acetone in acidic aqueous solution: $$R_3C$$ $CR_3$ $+ I_3$ $R_3C$ $R_2$ $+ R^+ + 2I^-$ R = H or C The reaction takes place with a rate law Rate = $$k[acetone]^m[I_3]^n[H^+]^p$$ where the rate constant k and the integer reaction orders m, n, and p are for you to determine. You will also compare the reactivity of acetone with that of acetone- $d_6$ , where the six atoms of protium ( $^1$ H) have been replaced by deuterium ( $^2$ H or D), to determine the isotope effect ( $k_H/k_D$ ) of the reaction. From these data you will make inferences about the mechanism of this reaction. Please read the whole description of this task and plan your work before you begin. # **Procedure** Reaction rates are dependent on temperature. Record the temperature in the room you are working in (ask the room assistant): °C Instructions for using the digital timer (stopwatch) - (1) Press the [MODE] button until the COUNT UP icon is displayed. - (2) To begin timing, press the [START/STOP] button. - (3) To stop timing, press the [START/STOP] button again. - (4) To clear the display, press the [CLEAR] button. #### General Procedure Measure the volumes of hydrochloric acid, distilled water, and potassium triiodide solution (labelled as "I<sub>2</sub>") that you choose into the reaction vessel. The initial concentrations of the reagents in the reaction mixtures should be in the ranges given below (you need not explore the full ranges given, but your values should not be significantly outside these ranges): $[H^{+}]$ : Between 0.2 and 1.0 M $[I_3^-]$ : Between 0.0005 and 0.002 M [acetone]: Between 0.5 and 1.5 M To initiate the reaction, add the chosen volume of acetone to the solution containing the other reagents, quickly cap the reaction vessel, start the timer, shake the vial vigorously once, then put it aside on a white background. Report the volumes of reagents that you use in the table provided in (a) – on page 7. When setting up and running a reaction do not hold or touch the vial below the level of liquid in it. The progress of the reaction can be monitored visually by watching the disappearance of the yellow-brown colour of the triiodide ion. Record the time required for the colour to disappear. When the reaction is complete, set aside the vessel, and leave it sealed so that you do not expose yourself to iodoacetone vapours. Repeat as often as desired with different concentrations of reagents. Report the concentrations of the reagents that you use in the tables in (c) – on page 8. *Hint: change one concentration at a time*. Once you have studied the rate of reaction of acetone, you should examine the rate of reaction of acetone- $d_6$ . Note that while you have an ample supply of acetone, you will be given only 3.0 mL of acetone- $d_6$ because of the greater expense of the isotopically labelled material. Therefore, any refilling of acetone- $d_6$ will be accompanied by a one point penalty. When you need to use this reagent, raise your hand and the lab supervisor will open the sealed ampule for you. The reactions of deuterium-substituted compounds are generally slower than those of protium-substituted compounds. You would thus be well advised to use reaction conditions that promote faster reactions when working with $(CD_3)_2CO$ . When you are finished working: - a) empty the water bottle and place it along with any unused equipment back to the box labelled "Kit #1"; - b) place used pipettes and sealed used vials in designated containers under the hoods; - c) Use a container labelled Broken Glass Disposal to dispose of all parts of the empty ampule. You may clean up your area after the STOP command has been given. **a.** Record your results for acetone, $(CH_3)_2CO$ , in the table below. You need not fill the entire table. | Run # | Volume HCl<br>solution, mL | Volume<br>H <sub>2</sub> O, mL | Volume I <sub>3</sub> solution, mL | Volume<br>(CH <sub>3</sub> ) <sub>2</sub> CO, mL | Time to disappearance of I <sub>3</sub> -, s | |-------|----------------------------|--------------------------------|------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | | | | | 2 | | | | · | THE PROPERTY OF O | | 3 | | | , | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | | 7 | | | | | | | 8 | | | | | | **b.** Record your results for acetone- $d_6$ , $(CD_3)_2CO$ , in the table below. You need not fill the entire table. | Run# | Volume HCl<br>solution, mL | Volume<br>H <sub>2</sub> O, mL | Volume I <sub>3</sub> <sup>-</sup> solution, mL | Volume<br>(CD <sub>3</sub> ) <sub>2</sub> CO, mL | Time to disappearance of $I_3^-$ , s | |------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------| | 1d | The state of s | | | | 0113,3 | | 2d | | | | | | | 3d | | | | | | | 4d | | | | | | Code: GBR c. Use the following tables to calculate concentrations and average rates for the reactions you studied. Assume that the volume of each reaction mixture is equal to the sum of volumes of its constituent solutions. You need not use all of your runs in your calculation of k (parts e and f), but you must indicate which run or runs you used in your calculation by ticking the appropriate box in the right-hand column. ### $(CH_3)_2CO$ : | Run # | Initial [H <sup>+</sup> ],<br>M | Initial [I <sub>3</sub> <sup>-</sup> ],<br>M | Initial<br>[(CH <sub>3</sub> ) <sub>2</sub> CO], M | Average rate of disappearance of I <sub>3</sub> , M s <sup>-1</sup> | Run used in calculating $k_{\rm H}$ ? Yes No | |-------|---------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------| | 1 | | | ************************************** | 147 9 | 162 140 | | | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | | 7 | | | | | | | 8 | | | | | | ## $(CD_3)_2CO$ : | Run# | Initial [H <sup>+</sup> ],<br>M | Initial [I <sub>3</sub> ¯],<br>M | Initial $[(CD_3)_2CO], M$ | Average rate of disappearance of I <sub>3</sub> , M s <sup>-1</sup> | Run used in calculating $k_D$ ? Yes No | |------|---------------------------------|----------------------------------|-----------------------------------------|---------------------------------------------------------------------|-----------------------------------------| | 1d | | | | 171.5 | | | 2d | | | | | | | 3d | WWW. 1918/1918 | | *************************************** | | | | 4d | | | | | | d. Give the integer reaction order in acetone, triiodide, and hydrogen ion. rate = $$-\frac{d[I_3^-]}{dt} = k[(CH_3)_2CO]^m[I_3^-]^n[H^+]^p$$ $$m =$$ $$n =$$ $$p =$$ e. Calculate the rate constant $k_{\rm H}$ for the reaction of acetone, $({\rm CH_3})_2{\rm CO}$ , and indicate the units. $$k_{\rm H} =$$ **f.** Calculate the rate constant $k_D$ for the reaction of acetone- $d_6$ , $(CD_3)_2CO$ , and calculate $k_H/k_D$ (the isotope effect of the reaction). $$k_{\rm D}$$ = $$k_{\rm H}/k_{ m D} =$$ g. From the kinetic and isotope effect data you may draw certain conclusions about the reaction mechanism. Shown below is a reasonable mechanism for the iodination of acetone. One of the steps is the rate-determining step (R.D.S.), with all previous steps rapidly achieving an equilibrium that strongly favours the reactants. In the box in the first column on the right next to each step, place a () if your experimentally measured rate law (part d) is consistent with that step being rate-determining and an X if your measured rate law is inconsistent with that step being rate-determining. In the box in the second column on the right next to each step, place a $(\checkmark)$ if your experimentally measured isotope effect (part f) is **consistent** with that step being rate-determining and an X if your measured isotope effect is **inconsistent** with that step being rate-determining. | | R.D.S. consistent | R.D.S. consistent | |--------------------------------------------------------------------|-------------------|----------------------| | | with rate law? | with isotope effect? | | + H <sub>3</sub> O+ + H <sub>2</sub> O | | | | HO <sup>+</sup> + H <sub>2</sub> O + H <sub>3</sub> O <sup>+</sup> | | | | HO + 1 <sub>3</sub> + 2 - | | | | HO+<br>1 + H <sub>2</sub> O + H <sub>3</sub> O+ | | | # **Instructions (Task 2)** • This examination has 13 pages (page numbers 11-23) for Task 2 and answer sheets. A Periodic Table is on page 12. - You have 15 minutes to read this booklet before starting the experiments. - You have 2 hours 45 minutes to complete the practical Task 2. When planning your work, please note that one of the steps requires 30 minutes. - Begin only when the **START** command is given. You must stop your work immediately when the **STOP** command is announced. A delay in doing this by 5 minutes will lead to cancellation of your practical exam. After the **STOP** command has been given, wait in your lab space. A supervisor will check your lab space. The following items should be left on your bench: The problem / answer booklet (this booklet) One TLC plate in zipper storage bag with student code The vial labeled "Product" - You are expected to follow **safety rules** given in the IChO regulations. While you are in the laboratory, you must wear **safety glasses** or your own prescription safety glasses if they have been approved. Use the **pipette filler bulb** provided. You may use **gloves** when handling chemicals. - You will receive only **ONE WARNING** from the laboratory supervisor if you break safety rules. On the second occasion you will be dismissed from the laboratory with a resultant zero score for the entire practical examination. - Do not hesitate to ask your assistant if you have any questions concerning safety issues or if you need to leave the room. - You are allowed to work only in the space allocated for you. - Use only the pen provided, not a pencil, for writing the answers. - Use only the calculator provided. - All results must be written in the appropriate areas on the answer sheets. Anything written elsewhere will not be graded. Use the backside of the sheets if you need scrap paper. - Use the container labeled as "Broken Glass Disposal" to dispose used vials. - Use the container labeled as "Liquid Waste" to dispose all waste solutions. - Chemicals and lab ware will be **refilled or replaced** without penalty only for the first incident. Each further incident will result in the **loss of 1 point** from your 40 practical exam points. - The official English version of this examination is available on request only for clarification. | ž | Name: | | | | | | | | | Çō | Code: GBR | , | | | | | | | |-------------|---------------|-------------------|---------|---------------|---------------|----------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|--------------------|-----------|---------------------|---------------------|--------------|--------------------| | • | 1.00794 | | | | | | | | | | | | | | | | L | 18<br>2<br>4.00260 | | <del></del> | 0.28 | 7 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | <b>He</b> 1.40 | | | 3 6 044 | 4 | | Atc | Atomic number | per — | | Atr. | Atomic weight | ıt | | | I | | | 8 | 6 | 10 | | 2 | | | | | | | | A Ato | ← Atomic symbol | ō | | | 10.811<br><b>B</b> | ~~~~~~ | | 15,9994 | 18.9984<br>F | 20.1797 | | | | | | | | | 0.28 | Cove | Covalent radius, Å | š, Å | | | 0.89 | 0.77 | 0.70 | 99.0 | 0.64 | 1.50 | | | 77 0909 | 72 | | | | 1 | | | | | | | | | | | 17 | 18 | | ç | 24.9090<br>Na | 7.47 | | | | | | | | | | | | | 30.9738 | | | 39.948 | | ŋ | <u> </u> | 20 | | | | | | | | | | | ₹ | S . | α : | S | ਹ | A | | | | | က | 4 | 5 | 9 | 7 | 8 | o | 10 | | 12 | | 1.1/ | 1,10 | 1.04 | 66.0 | 1.80 | | | 19 | ~ | | 22 | <del></del> | <u> </u> | 25 | 26 | 12 | | 29 | | 31 | 32 | 33 | 34 | 35 | 36 | | | 39.0983 | 40. | 44.9 | 47.867 | 50.9415 | 51.9961 | 54.9381 | 55.845 | 58.9332 | 58.6934 | 63.546 | 65.38 | 69.723 | 72.61 | 9216 | 96.82 | 9.904 | 83.80 | | 4 | ∠ | ق | သွ | = : | > ! | | 5 | H<br>E | ပိ | Z | ಪ | Zu | G | ge | As | Se | ğ | 호 | | | t | 5 | | 1.46 | 1.33 | 1.25 | 1.3 | 1.24 | 1.25 | 1.24 | 1.28 | 1.33 | | 1.22 | 1.20 | 1.18 | 1.14 | 1.90 | | | 37 | 38 | | 40 | 4- | - | | | | | | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | ı | 85.4678 | 87.62 | 88.9059 | 91.224 | 92.9064 | 95.94 | (97.905) | | 102.906 | | 107.868 | | 114.818 | 118.710 | 121.760 | 127.60 | 126.904 | 131.29 | | വ | 2 | う | > | 7 | | | ည | Z. | 준 | Pd | Ag | | | S | Sb | Te- | | Xe | | | L | | i | 00.1 | 1.43 | 1.37 | 1.36 | 1.34 | 1.34 | 1.37 | 1.44 | 1.49 | 1.67 | 1.40 | 1.45 | 1.37 | 1.33 | 2.10 | | | 33 | 36 | L/-/G | 72 | | | | | | | | | _ | | <u></u> | 1 | 85 | 86 | | ( | 132.300 | | - | 1/8.43 | 180.948 | | 186.207 | | 192.217 | 195.08 | 6 | | 204.383 | | | | (209.99) | (222.02) | | 0 | 3 | <u>g</u> | | 1.59 | 1,43 | 1.37 | 1,37 | S 1.35 | 136 | <b>1</b> % | <b>Au</b> | <b>D</b> & | <b>—</b> 22 | 0 , | | Po . | At | <u>ج</u> ج | | | 87 | 88 | 89-103 | 104 | 105 | 106 | <del> </del> | | | 110 | 11 | 112 | | | | 116 | 117 | 4.40<br>118 | | | (223.02) | (226.03) | | (261.11) | (262.11) | | (262.12) | (265) | (566) | | 272) | (582 | 84) | (68) | 88) | 292) | 294) | (294) | | / | Ļ | <b>Ка</b><br>2.25 | Ac-Lr | Ż | 20 | Sg | <u> </u> | ¥ | THE STATE OF S | Ds | Rg | 5 | Uut | Ξ | 3 | ٢ | Ous | ŝ | | | | 57 | 58 | | 09 | 61 | 62 | 63 | 64 | 65 | 99 | 67 | 88 | 69 | 1 02 | 7.4 | | | | | | 138.906 | 140.115 | 140.908 | 144.24 | | 150.36 | ************ | 157.25 | 158 97 F | 162.50 | 167 030 | 167 DB | 7000 | 72.04 | 177.04 | | | | | | La | | | - | • | | | 3 | | | 5 | | 00 | 1/3:04<br><b>Yb</b> | 1/4.04<br><b>Lu</b> | | | | | | 1.87 | 8 | | | | 1.80 | 2.04 | 1.79 | 1.76 | 1.75 | 1.74 | 1.73 | 1.72 | 1.94 | - 1 | | | | | | (227.03) | 232.038 | 91<br>231 036 | 92 | | 93 94 037 05) 044 06) | | 96 | 70 270 | 98 | 99 | 100 | 101 | 102 | 103 | | | | | | ( ) ) | | | | | | | - (74/) - | (747.U/) | 22 08 | (S) (S) | | (258 1(3) | (250 4) | (260 4) | | | | 7.4 | 174 04 | . <b>=</b> | 1 72 | 102 | 3 | (1.007) | - | j | | |------|----------|----------------------|----------|-----|--------------|------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 70 7 | 73.04 | X. | 102 | , , | <del>-</del> | | Z | 2 | - | | 69 | 168 934 | Tm_ Tm | 172 | | | (200.10) | 2 | <u> </u> | - | | 68 | 167 | | <b>~</b> | 2 | 257.40 | (O | E | : | - | | 29 | 164.930 | Pm Sm Eu Gd Tb Dv Ho | 1.74 | 99 | (2E2 DB) | (202.00) | V. | 2.03 | | | 99 | 162.50 | 6 | 1.75 | 86 | (051 08) | (401.00) | ت | 199 | | | 65 | 158,925 | Q_ | 1.76 | 26 | 70 7 107 | (10.114) | ă | 1.72 | | | 64 | 157.25 | g | 1.79 | 96 | (70 770) | ( ) | E<br>S | 1.74 | | | 63 | 151,965 | 3 | 2.04 | 95 | (243.06) | (00.01) | Am | 1.73 | | | 62 | 150.36 | Sm | 1.80 | 94 | (244.06) | (00.1.1.1) | DG. | 1.59 | | | 61 | (144.91) | E <sub>d</sub> | 1.83 | 93 | (237.05) | () | 2<br>Z | 1.55 | | | 09 | 144.24 | Z | 1.81 | 92 | 238 029 | : | 5 | 1.38 | | | 59 | 140.908 | ۵ | 1.82 | 91 | 231.036 | ( | J<br>G | 1.56 | | | 58 | 140.115 | La Ce Pr Nd | 1.83 | 06 | 232.038 | F | = | 1.80 | The state of s | | 57 | 138.906 | Ľ | 1.87 | 89 | (227.03) | • | AC | 1.88 | | The 44th IChO – Practical Examination. UK Version Code: GBR # Chemicals and Equipment (Task 2) # Chemicals and materials (the actual labelling for each package in given in bold font) | Risk Phrase <sup>+</sup> | Safety Phrase <sup>+</sup> | |--------------------------|----------------------------| | | S26 S28A S37 S37/39 | | K30/37/36 | | | | S45 | | R36/37/38 R62 R63 | S26 S37/39 | | R11 R36/38 | S9 S16 S26 | | | | | R11 | S7 S16 | | R11 R36 R66 R67 | S9 S16 S26 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | R11 R36/38 | <sup>\*</sup> See page 15 for definition of Risk and Safety Phrases. <sup>a</sup> (salen)H<sub>2</sub>: <sup>&</sup>lt;sup>b</sup> The exact value is indicated on the label. <sup>&</sup>lt;sup>c</sup> (salen\*)MnCl<sub>x</sub> (both R groups are equal and can be either H, or COOH or SO<sub>3</sub>H): ### Equipment Common Use: Balance - Two stands with clamps located under hood labelled with your code - One hotplate stirrer - One 300 mm ruler - One pencil #### Kit #2: - Two 250 mL Erlenmeyer flasks (one for synthesis, one for crystallization) - One graduated cylinder, 50 mL - One 20 mm long egg-shaped magnetic stirring bar - One Hirsch funnel - Filter paper circles for Hirsch funnel and for TLC chamber - One 125 mL suction flask for vacuum filtration - Rubber adapter for suction flask - One 0.5 L plastic ice bath - One glass rod - Two 1 mL plastic transfer pipettes (see drawing in the right) - One plastic spatula - One empty 4 mL snap-cap vial labelled "Product" for reaction product #### Kit #3: - Three empty small screw-cap vials (for TLC solutions) - Ten short capillary tubes (100 mm) for TLC spotters - One watch glass (for the TLC chamber) - One 250 mL beaker for TLC chamber #### Kit #4: - One assembled and ready to used 25 mL burette - One small plastic funnel - Four 125 mL Erlenmeyer flasks - One rubber bulb for pipettes - One 10 mL volumetric pipette - One 5 mL volumetric pipette # Risk and Safety Phrases (Task 2) R11 Highly flammable R36/37/38 Irritating to eyes, respiratory system and skin R62 Possible risk of impaired fertility R63 Possible risk of harm to the unborn child R66 Repeated exposure may cause skin dryness or cracking R67 Vapours may cause drowsiness and dizziness S7 Keep container tightly closed S9 Keep container in a well-ventilated place S16 Keep away from sources of ignition S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S28A After contact with skin, wash immediately with plenty of water. S37 Wear suitable gloves. S37/39 Wear suitable gloves and eye/face protection. S45 In case of accident or if you feel unwell, seek medical advice immediately ### Task 2 # 22% of the Total # Synthesis of a Salen Manganese Complex and Determining Formula of the Product | A | B-i | B-ii | C-i | C-ii | Task 2 | 22% | |----|-----|------|-----|------|--------|-----| | 10 | 15 | 4 | 4 | 2 | 35 | | | | | | | | | | Transition metal complexes of the 3*d*-block elements derived from the bis(salicylidene)ethylenediamine (salen) ligand have proven to be efficient catalysts of various redox reactions in organic synthesis. R—OH HO—R (salen) $$\mathbf{H}_2$$ , $R = \mathbf{H}$ (salen\*) $\mathbf{H}_2$ , $R = \mathbf{H}$ , COOH, or SO<sub>3</sub>H The ability of the salen ligand to stabilize higher oxidation states of 3d-block elements is important in this chemistry. In particular, compounds of manganese in oxidation states from +2 to +5 can be generated depending on the reaction conditions when the manganese salen complex is prepared. In this task you are required to prepare a manganese salen complex by reacting (salen)H<sub>2</sub> with Mn(II) accetate in ethanol in the air in the presence of lithium chloride. Under these conditions, you might have obtained a complex of the formula (salen)MnCl<sub>x</sub>, where x = 0, 1, 2, or 3. You will need to: i) determine the mass of the product, ii) characterize the purity of the material prepared using thin-layer chromatography (TLC), and iii) determine the metal oxidation state in the complex using an iodometric redox titration. For the redox titration, you will be given a solution of a previously prepared analogue of your compound, (salen\*)MnCl<sub>x</sub>, where manganese has the same oxidation state as in the product and the R-substituent on the benzene ring is either H, COOH, or SO<sub>3</sub>H. Please read the whole description of this task and plan your work before you begin. Some operations have to be performed in parallel in order to complete it in time. ### Procedure: #### A. Synthesis of (salen)MnCl<sub>x</sub> $$+ Mn(OOCCH_3)_2 + O_2 + LiCI$$ $$+ Mn(OOCCH_3)_2 + O_3 + LiCI$$ $$+ Mn(OOCCH_3)_2 + O_4 + LiCI$$ $$+ Mn(OOCCH_3)_2 + O_5 + LiCI$$ $$+ Mn(OOCCH_3)_2 + O_5 + LiCI$$ $$+ Mn(OOCCH_3)_2 + O_5 + LiCI$$ - 1) Place 2-3 crystals of (salen)H<sub>2</sub> aside in a small vial to be used for the TLC experiment later. - 2) Transfer the pre-weighed ~1.0 g sample of (salen)H<sub>2</sub> provided into a 250 mL Erlenmeyer flask containing a stirring bar. Combine the reagent with 35 mL of absolute ethanol. - 3) Place the flask on a hot plate stirrer. Heat the contents with constant stirring until the solid dissolves (usually, dissolving is complete when the ethanol is about to boil). Then decrease the temperature setting to maintain the mixture close but below its boiling point. Do not boil the mixture so that the neck of the flask remains cool. If the flask is too hot to hold with bare hands, use a folded paper towel. - 4) Remove the flask from the hotplate and add to its content a pre-weighed ~1.9 g sample of Mn(OAc)<sub>2</sub>·4H<sub>2</sub>O. A dark brown colour will develop. Return the flask to the hotplate immediately; continue heating and stirring for 15 min. Do not boil the mixture so that the neck of the flask remains cool. - 5) Remove the flask from the hotplate and add to its contents the provided solution of 1M LiCl in ethanol (12 mL, an excess). Return the flask to the hotplate; continue heating and stirring for 10 min. Do not boil the mixture so that the neck of the flask remains cool. - 6) After this time remove the flask from the hotplate, and place it in an ice bath for crystallization for 30 min. Every 5 min gently scratch the inside walls of the flask under the liquid level with a glass rod to accelerate crystallization of (salen)MnCl<sub>x</sub>. The first crystals may appear immediately upon cooling or after a period of 10-15 minutes. - 7) Use the vacuum line located inside the hood (the corresponding valve is labelled "Vacuum") and suction filter the crystalline solid formed using the small Hirsch funnel and a suction flask. Use a transfer pipette to wash the solid with few drops of acetone without disconnecting the flask from the vacuum line, and leave it on the filter (with the suction on) for 10-15 min to air-dry. - 8) Transfer the solid product into a pre-weighed vial labelled "Product", then determine and record its mass, $m_p$ , in the box below. Record also the mass of the following reagents used in the synthesis: (salen)H<sub>2</sub>, $m_S$ , and Mn(OOCCH<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O, $m_{Mn}$ . - 9) Place the labelled vial with product into a zipper bag. | Mass of the empty vial for the product: | | |-----------------------------------------------------------------------------------|-----------------------------------------| | Mass of the vial with the dried product: | | | Mass of the product, $m_p$ : | { | | Mass of (salen)H <sub>2</sub> from label on the vial (copy | from the label), $m_S$ : | | Mass of Mn(OOCCH <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O from label on the | he vial (copy from the label), $m_{Mn}$ | #### Name: Code: GBR ### B. Volumetric analysis of a sample of (salen\*)MnCl<sub>x</sub> provided $$R \xrightarrow{N \text{ CI}_{X} \cdot N} \text{HO} \xrightarrow{O} \text{O} \text{HO} \xrightarrow{O} \text{HO} \text{O} \text{O} \text{HO} \text{O} \text{HO} \text{HO}$$ ### R = H, COOH, or $SO_3H$ ### Using bulb pipette filler - 1) Attach the bulb to a pipette - 2) Squeeze firmly the rubber bulb - 3) Squeeze the up arrow button to suck in some solution into pipette attached - 4) Squeeze the down arrow button to release some solution from the pipette into a target flask Note: The pipettes and burette are ready to use and do not need to be cleaned. - 1) Dispense 10.00 mL of the provided (salen\*)MnCl<sub>x</sub> solution into a 125 mL Erlenmeyer flask using the volumetric pipette. - 2) Add 5.00 mL of the ascorbic acid solution to this solution and mix well. Allow the solution to stand for 3-4 minutes. - 3) To avoid oxidation of ascorbic acid with O<sub>2</sub> do not delay and titrate the solution <u>immediately</u> with the KI<sub>3</sub> solution using 5 drops of a 1% starch solution as indicator. The blue or bluegreen endpoint should persist for at least 30 sec. - 4) If time permits, perform 1-2 replicate titrations to improve the accuracy of your determination. Place the results of your titration experiment(s) in the table below: | Initial volume reading | Final volume reading in | Volume of KI <sub>3</sub> solution | |-------------------------------|-------------------------------------------------|--------------------------------------------------------------------| | in burette of KI <sub>3</sub> | burette of KI <sub>3</sub> solution, | consumed, mL | | solution, mL | mL | | | | | | | | | | | | ATTACAMA AND AND AND AND AND AND AND AND AND AN | | | | in burette of KI <sub>3</sub> | in burette of KI <sub>3</sub> burette of KI <sub>3</sub> solution, | | Name: | Code: GBR | |------------------------------------------------------------------------------------------------------------------------------------|--------------------------------| | i. Indicate the volume (selected or averaged) of $KI_3$ solution use for calculations of molar mass of (salen*)MnCl <sub>x</sub> : | n consumed in mL that you will | | Volume of KI <sub>3</sub> solution used in calculations: | mL | | | | | Concentration of (salen*)MnCl <sub>x</sub> (from label on the bottle): | mg/mL | Concentration of ascorbic acid (from label on the bottle): M ii. From your titration data and referring to the table below deduce the value of x, the oxidation state of manganese and the identity of the substituent on the salen ligand (R = H, COOH, $SO_3H$ ). Show them in the template below: | R | X | (Theoretical molar | |-------------------|---|--------------------| | | | mass)/x, g/mol | | Н | I | 357 | | H | 2 | 196 | | Н | 3 | 143 | | СООН | 1 | 445 | | СООН | 2 | 240 | | СООН | 3 | 172 | | SO <sub>3</sub> H | 1 | 517 | | SO <sub>3</sub> H | 2 | 276 | | SO <sub>3</sub> H | 3 | 196 | ### C. TLC characterization of (salen)MnCl<sub>x</sub> 1) Dissolve a few crystals of the (salen)MnCl<sub>x</sub> that you have prepared in a few drops of absolute ethanol using a small vial and a plastic transfer pipette for ethanol. - 2) Dissolve a few crystals of (salen)H<sub>2</sub> in a few drops of absolute ethanol using another small vial. - 3) If necessary, use scissors (available from lab assistant upon request) to trim the TLC plate so it is an appropriate height for the TLC chamber. - 4) Fold or trim a large circle of filter paper, and place it in the beaker so that it takes almost the full height of the beaker. This is required to saturate the chamber with ethanol vapour. Add ethanol to the beaker to wet the filter paper, and cover the bottom with a 3-4 mm thick layer of the solvent. Seal the beaker with the watch glass. - 5) Mark the start. - 6) Using the capillary tubes provided spot the TLC plate with both solutions. - 7) Run a TLC in the beaker covered with a watch glass for 10-15 min. - 8) Mark the solvent front as well as the coloured spots on the TLC plate using a pencil. - 9) Dry the TLC plate in air and place it back into a zipper bag with student code. - 10) Calculate the $R_f$ for both (salen) $H_2$ and (salen) $MnCl_x$ . i. Sketch the TLC plate on your answer sheet ii. Determine and record the R<sub>f</sub> values for (salen)H<sub>2</sub> and (salen)MnCl<sub>x</sub> | $R_f$ , (salen) $H_2$ : | | |------------------------------------|--| | $R_f$ , (salen)MnCl <sub>x</sub> : | | | | | When you are finished working: - a) Place liquid waste into a container marked Liquid Waste. - b) Place used vials into a contained labelled Broken Glass Disposal. - c) Place used glassware back to appropriate boxes labelled "Kit #2", "Kit #3" and "Kit #4".