

說明(試題1)

- 試題 1 及答案卷共有 10 頁。
- 在開始考試前,你有15分鐘時間閱讀此說明。
- 你有 2 小時 15 分鐘時間來完成試題 1。
- 在START 口令下達後,你才可以開始動作。

當 STOP 口令下達後,你必須立刻停止動作;若你不加理會仍然繼續動作達 5 分鐘時間,則你會被取消實驗考試資格。

當STOP口令下達後,請你留在原地,監考的助教會前來檢查你的實驗範圍。

下列項目須置於實驗檯上:

此份題目/答案本

- 根據 IChO 的規定,你必須遵守安全守則,實驗時必須配戴大會所提供的護目鏡,或是你 自備且經核可的有度數的護目鏡。操作及使用藥品時可以戴手套。
- 若你違反實驗安全守則,第一次將給予警告;若仍然再犯,則你將被驅逐出場,且實驗 考試以零分計算!
- 當你有任何關於實驗安全的問題,或是需要暫時離開實驗室,請立即向監考人員求助。
- 你只能在限定的位置或範圍內工作。
- 限用大會提供給你的筆作答(不可以用鉛筆作答)。
- 限用大會提供給你的計算機。
- 必須在規定的範圍內作答,超出規定範圍的部分將不予給分! 但你可以使用紙張背面空白的部分來計算。
- 請將裝有反應溶液之密封反應瓶丟入標示 "Used Vials" 的容器中。
- 請將廢液倒入標示 "Liquid Waste" 的容器中。

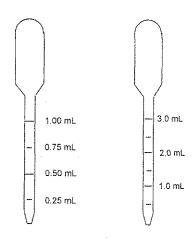
• 請將廢棄的棕色瓶各部位丟入標示 "Broken Glass Disposal" 的容器中。

- 當你第一次要求補充化學藥品或更換實驗器材時並不會被扣分;但此後每一項補充或更換 將會從實驗總分 40 分中扣掉 1 分。
- 若有需要,你可向監考人員索取一份英文版試題,以釐清你對題目的疑義。

藥品與器材(試題1)

藥品 (粗體字為實際藥品之標示)

~ 2 M HCl,*水溶液,50 mL 置於瓶中


~ **0.01 M** Kl₃, *水溶液 10 mL, 置於標示 "**l₂"** 之瓶中

丙酮(Acetone), (CH₃)₂CO,分子量=58.08,密度=0.791gmL⁻¹,10mL置於小血清瓶中

丙酮- d_6 (Acetone- d_6),(CD₃)₂CO,分子量 = 64.12,密度 = 0.872 g mL⁻¹,3 mL 置於鋁箔包內的藥品瓶中

器材-Kit#1

- 玻璃瓶一個,已裝蒸餾水供實驗用
- 20 mL 具旋轉瓶蓋之玻璃血清瓶,15 個
- 1-mL 具有 0.25 mL 刻度之塑膠(PE) 吸管, 10 個
- 3-mL 具有 0.50 mL 刻度之塑膠(PE) 吸管, 10 個
- 碼錶一個

^{*}實際濃度標示於藥品名稱之前

Task 1

18% of the total

a	b	c	d	e	f	g	Task 1	18%
10	2	10	12	16	12	8	70	

Code: TAI

動力學、同位素效應和丙酮碘化反應之機制

揭開化學反應之機制可促進催化及合成之進展。探測反應機制最強而有力的工具之一為探討動力學,因為反應速率隨反應條件之變化方式直接取決於反應機制。第二種強而有力的工具為研究同位素取代之分子。雖然同位素間具有相似的反應性,但其反應速率仍有些微之差異,此差異和原子核質量有關。

在本試題中,你將同時使用動力學與同位素效應,以找出丙酮在酸性水溶液中之碘化反應訊息:

$$R_3C$$
 CR_3 $+ I_3$ R_3C R_2 $+ R^+ + 2I^-$

R = H or D

本反應的速率定律式為

Rate = k [acetone]^m [I_3]ⁿ [H⁺]^p

式中速率常數 k 和整數的反應級數 $m \cdot n \cdot p$ 將由你來決定。

你也須比較 $(CH_3)_2CO$ 和 Acetone- d_6 之反應速率以決定同位素效應 (k_H/k_D) 。Acetone- d_6 係將 $(CH_3)_2CO$ 之 6 個气 (^1H) 置換成气 $(^2H, D)$ 。根據這些數據,你將可推測本反應之機制。

在進行實驗前,請詳讀本試題之全部描述並規畫你的實驗方法及步驟。

Code: TAI

步驟

反應速率與溫度有關。請記錄實驗室溫度(問實驗室助教)。

°C

碼表使用說明:

- (1) 按壓 [MODE] 鈕直到螢幕顯示 COUNT UP。
- (2) 按壓 [START/STOP] 鈕以開始計時。
- (3) 再次按壓 [START/STOP] 鈕以停止計時。
- (4) 按壓 [CLEAR] 鈕以歸零。

一般步驟

量取你所選擇之體積的鹽酸、蒸餾水和三碘化鉀(標示為"l₂")溶液置於反應瓶中。反應 混合物之各試劑的初濃度須在以下之範圍內(你不一定要涵蓋整個給定的範圍,但你的數值 不可以明顯超出這些範圍):

[HT]: 0.2~1.0 M 之間

[I₃]: 0.0005~0.002 M 之間

[acetone]: 0.5~1.5 M 之間

要啟動反應時,加入所需體積的 $(CH_3)_2CO$ 於上述溶液中,迅速蓋住反應瓶,按壓碼表開始計時,並劇烈搖動一次,然後將其放在一白色背景上靜置。記錄你所使用的各試劑之體積於 (a) 小題之表格中。在準備及進行反應時,不要碰觸或握住反應瓶裝盛液體的部位。反應的進度可用目視監測方式,觀察三碘化鉀離子 (I_3) 水溶液之黃褐色的消失,記錄顏色消失所需的時間。當反應完成後,將反應瓶放在旁邊,並維持封閉的狀態,以免讓自己暴露在碘丙酮蒸氣中。

用不同濃度的試劑重複上述步驟,其次數視你的需要而定。記錄你所使用的各試劑之濃度於(c)小題之表格中。

提示:每次只改變其中一種試劑的濃度。

當你完成 (CH_3) $_2CO$ 的反應速率探討後,必須再進行以 Acetone- d_6 代替 (CH_3) $_2CO$ 之反應速率實驗。請注意你只有 3.0 mL 的 Acetone- d_6 (因為同位素標記試劑非常昂貴)。因此若你要求重新補充 Acetone- d_6 ,則每次扣總分 1 分。當你要使用 Acetone- d_6 時,請舉手要求助教 帮你打開其藥品瓶。由於氘-取代化合物之反應速率通常遠慢於氫(氕)-取代化合物之反應速率,故建議你採用能使丙酮 (CH_3) $_2CO$ 之反應速率顯著快速的實驗條件,再以該組實驗的試劑濃度來進行 (CD_3) $_2CO$ 之反應。

當你完成實驗工作時:

- a) 將蒸餾水瓶倒空,並和其它未使用的器材放回標示"Kit #1"的盒子裡;
- b) 將使用過的吸管及密閉反應瓶置於抽氣櫃裡之指定容器內;
- c) 將空的 Acetone-d₆ 藥品瓶的各部位放入標示"Broken Glass Disposal"的箱子。 當 STOP 指令下達時,你必須停止實驗操作!若有需要,此時你可以將實驗桌面適度清理乾 淨。

Code: TAI

a. 記錄丙酮 (CH₃)₂CO 之實驗結果於下表。你不一定需要填滿整張表格。

Run #	Volume HCl solution, mL	Volume H ₂ O, mL	Volume I ₃ ⁻ solution, mL	Volume (CH ₃) ₂ CO, mL	I ₃ 顏色消失所需的時間, s
1			·		
2					
3				THE	
4					
5					
6					
7					
8					

b. 記錄氘丙酮 (CD₃)₂CO 之實驗結果於下表。你不一定需要填滿整張表格。

Run #	Volume HCl	Volume	Volume I ₃ solution,	Volume	I3 顏色消失所
	solution, mL	H_2O , mL	mL ·	$(CD_3)_2CO, mL$	需的時間, s
1d					
2d			·		
3d					
4d					

ΝĬ	ame	
JN	antic	

Code: TAI

c. 利用下表計算你所進行之實驗的濃度及平均反應速率。假設體積具有加成性!

計算速率常數 k 時 $(e \, n \, f \, n \, E)$,你不一定需要使用所有的實驗數據,但你必須在下表的最右方欄位之 $Yes \, \square$ 內勾選你採用的實驗數據。

(CH₃)₂CO:

Run #	初始 [H [†]],	初始 [I ₃],	初始	I ₃ 顏色消失的平	Run used in
	M	M	[(CH ₃) ₂ CO], M	均速率, M s ⁻¹	calculating k _H ?
					Yes No
1					
2					
3					
4					
5					
6					
7					
8					

$(CD_3)_2CO$:

Run #	初始 [H ⁺], M	初始 [I ₃ ⁻], M	初始 [(CD ₃) ₂ CO], M	I ₃ ⁻ 顏色消失的平 均速率, M s ⁻¹	Run used in calculating k _D ? Yes No
1d					
2d					
3d					
4d					

d. 寫出氫(氕)丙酮 $(CH_3)_2CO \cdot I_3^-$ 及 H^+ 之整數的反應級數。

rate =
$$-\frac{d[I_3]}{dt}$$
 = $k [(CH_3)_2CO]^m [I_3]^n [H^+]^p$

m =

$$n =$$

p =

e. 計算氫(氕)丙酮 (CH_3)2CO 之平均速率常數 k_H , 須寫單位。

$$k_{\rm H} =$$

f. 計算氘丙酮 $(CD_3)_2CO$ 和 I_3 反應之平均速率常數 k_D , 並計算 k_H/k_D (反應之同位素效應)。

$$k_{\rm D} =$$

$$k_{\rm H}/k_{\rm D} =$$

9

g. 根據動力學及同位素效應之數據,你可獲得反應機制的一些結論。下表為丙酮碘化反應之 合理機制,其中一個步驟是速率決定步驟(R.D.S.),所有其前面的步驟均將快速達成平衡 狀態。

若你實驗得到的速率定律式 (d 部分)符合某步驟為速率決定步驟,則在該步驟右邊第一欄的空格中標記 "✓";若不符合,則標記 "X"。若你實驗得到的同位素效應(f部分)符合某步驟為速率決定步驟,則在該步驟右邊第二欄的空格中標記 "✓";若不符合,則標記 "X"。

	此步驟若為	此步驟若為
	R.D.S.,是否符合	R.D.S.,是否符合
	速率定律式?	同位素效應?
+ H ₃ O+ + H ₂ O		
HO ⁺ + H ₂ O + H ₃ O ⁺		
HO + 13 + 2 -		
HO ⁺ 1 + H ₂ O + H ₃ O ⁺		

說明(試題二)

- 試題二共有12頁。
- 在開始考試前,你有15分鐘時間閱讀題目。
- 你有2小時45分鐘時間來完成試題二。當你規劃實驗時,特別注意有一步驟需要30分鐘。
- 在 START 口令下達後,你才可以開始做實驗。

當 STOP 口令下達後,你必須立刻停止實驗;若你不加理會仍然繼續做實驗達5分鐘,則會被取消實驗考試資格。

當 STOP 口令下達後,請你留在實驗桌旁,助教會到你的實驗桌旁,下列項目須置於實驗桌上:

此份題目/答案本 裝有TLC片的夾鏈袋 標示"Product"的樣品瓶

- 根據 IChO 的規定,你必須遵守安全守則,實驗時必須配戴大會所提供的護目鏡,或是你 自備且經核可的有度數的護目鏡。 使用吸量管時必須使用安全吸球。 使用藥品時可以戴手套。
- 若你違反實驗安全守則,第一次將給予警告;若再犯,則將被驅逐出場,且實驗考試以零分計算!
- 當你有任何關於實驗安全的問題,或是需要暫時離開實驗室,請立即向監考人員求助。
- 你只能在提供給你的範圍內工作。
- 只能用大會提供給你的筆作答(不可以用鉛筆作答)。
- 只能用大會提供給你的計算機。
- 必須在規定的範圍內作答,超出規定範圍的部份將不予給分! 若有需要,可以使用紙張的背面當計算紙用。
- 請將廢棄的樣品瓶丟人標示 "Broken Glass Disposal" 的容器中。
- 請將廢液倒入標示 "Liquid Waste" 的容器中。
- 當你第一次要求補充化學藥品或更換實驗器材時不會被扣分;但此後每一項補充或更換器 材將會從實驗總分40分中扣掉1分。
- 若有需要,你可向監考人員索取一份英文版試題,以釐清你對題目的疑義。

Na	Name:						Code: T/	AI										
1	1 1.00794 H 0.28	. 2											.13	4	5	. 10	71	18 4.00260 He
73	3 6.941 Li	4 9.01218 Be		V	Atomic number	per	1.00794 H 0.28	At Att	- Atomic weight Atomic symbol Covalent radius, Å	ol , Å			5 10.811 B 0.89	6 12.011 C 0.77	7 14.0067 N 0.70	8 15.9994 0 0.66	9 18.9984 F 0.64	10 20.1797 Ne 1.50
т	11 22.9898 Na	12 24.3050 Mg	·	ঘ	v			×	o	Ç	em em		13 26.9815 Al	14 28.0855 Si 1.17	15 30.9738 P 1.10	32.066 S 1.04	17 35.4527 CI 0.99	18 39.948 Ar 1.80
7	19 39.0983 K	20 40.078 Ca	21 44.9559 Sc	22	23	245	9381 Mn	26 55.845 Fe 124	9332 Co	8934 Ni	3.546 Cu	5.39 Zn	31 69.723 Ga	32 72.61 Ge	33 74.9216 As	34 78.96 Se	35 79.904 Br	36 83.80 Kr
8	37 85.4678 Rb	38 87.62 Sr	39 88.9059 Y	40 91.224 Zr 1.60	92.9	9.	43 (97.905) Tc 1.36	101.07 Ru Ru		 	47 107.868 Ag	48 112.41 Cd						54 131.29 Xe
9	55 132.905 Cs	56 137.327 Ba	57-71 La-Lu	72 178.49 Hf 159	73 180.	18	75 186.207 Re 1.37	76 190.23 Os	 	- 		···						86 (222.02) Rn
<i>L</i>	87 (223.02) Fr	88 (226.03) Ra 2.25	89-103 Ac-Lr	104 (261.11) Rf	105	106		108 (265) Hs			111 (272) Rg	112 (285) Cn		_			117 (294) Uus	118 (294) UUo
		57 138.906 1.87 89 (227.03) Ac 1.88	58 140.115 Ce 1.83 90 232.038 1.80	59 140.908 21.82 91 231.036 1 Pa Pa 156	60 144.24 Nd 181 181 181 181 181 181 181 181 181 18	61 (144.91) d (144.91) d (183 93 (237.05) U Np	62 150.36 Sm 1.80 94 (244.06) Pu 1.59	63 151.965 Eu 2.04 95 (243.06) Am 1.73	64 157.25 Gd 1.79 96 (247.07) Cm L.74	65 158.925 Tb 176 97 (247.07) BK 1.72	66 162.50 Dy 1.75 98 (251.08) Cf	67 164.930 Ho 1.74 99 (252.08) Es	68 167.26 Er 1.73 100 (257.10) Fm	69 168.934 Tm 1.72 101 (258.10) Md	70 173.04 Yb 194 102 (259.1) No	71 174.04 Lu 1.72 103 (260.1) Lr		

Chinese Taipei version

Code: TAI

藥品與器材(試題二)

藥品 (粗體字為實際藥品之標示)

(salen)H₂, a~1.0 gb 在樣品瓶中

Mn(OOCCH₃)₂·4H₂O, ~1.9 g^b 在樣品瓶中

LiCl, 1M 乙醇溶液, 12 mL 在瓶中

Ethanol, 乙醇 70 mL 在瓶中

Acetone, (CH₃)₂CO, 100 mL 在瓶中

(salen*)MnCl_x,° ~32 mL of a ~3.5 mg/mL^b 為溶液在瓶中

KI₃, ~0.010 M 水溶液, ^b 50 mL 在,標示為"**I**₂"的瓶中

Ascorbic Acid (維生素 C)~0.030 M 水溶液 b, 20 mL 在瓶中

1% Starch, 澱粉水溶液, 2 mL 在瓶中

TLC plate - 5 cm × 10 cm , 在塑膠夾鏈袋中

a (salen)H₂:

b 標籤上有正確的重量。

 c (salen*)MnCl_x (兩個 R 基是一樣的,可能為 H、或 COOH 或 $\mathrm{SO_3H}$):

Code: TAI

器材

公用: 天平

- 兩個鐵架和夾子,在通風櫃內,貼有你的代碼。
- 加熱攪拌器 一個
- 300 mm 長尺一支
- 鉛筆一支

Kit #2:

- 250 mL 錐形瓶二個 (一個用於合成,另一個用於再結晶)
- 50 mL 量筒一個
- 20 mm 長的橢圓形攪拌子一枚
- 赫氏 (Hirsch) 漏斗一個
- 濾紙 (用於赫氏漏斗(小)及 TLC 展開槽(大))
- 150 mL 有側管的錐形瓶一個 (用於減壓過濾)
- 橡皮管和接頭(給減壓抽濾瓶用)
- 0.5 L 的冰浴保麗龍塑膠盆一個
- 玻璃棒一支
- 1 mL 的塑膠滴管二支(如右圖)
- 塑膠刮勺一支
- 標有 "Product" 的 4 mL 含旋轉蓋的樣品瓶一個 (裝產物用)

Kit #3:

- 含旋轉蓋的小樣品瓶 3 個 (準備 TLC 溶液用)
- 毛細管十支 (100 mm 長,點 TLC 樣品用)
- 錶玻璃一個 (用來蓋住燒杯作為 TLC 展開槽)
- 250 mL 燒杯一個作為 TLC 展開槽

Kit #4:

- 已組裝好的 25 mL 滴定管一組
- 小塑膠漏斗一個
- 125 mL 的錐形瓶四個
- 橡膠安全吸球一個(吸量管用)
- 10 mL 吸量管一支
- 5 mL 吸量管一支

Task 2

22% of the Total

合成錳 Salen 錯合物並判斷其組成

A	B-i	B-ii	C-i	C-ii	Task 2	22%
10	15	4	4	2	35	

3d 過渡金屬和 salen 結合成之錯合物已被證明是很好的氧化還原催化劑,可用於許多有機合成反應上。

 $(salen)H_2, R = H$

 $(salen*)H_2$, R = H, COOH, or SO₃H

Salen 配位基可以穩定 3d 過渡金屬的較高氧化態,是此類化學中重要的因素。尤其是錳,它的氧化數可從+2 到+5,視反應條件而定。在本實作中,你要在空氣中和氯化鋰存在的條件下,將(salen) H_2 和醋酸錳(II)溶於乙醇溶劑中反應,合成一個錳和 salen 的錯合物。在此條件下,你所合成出來的錯合物為(salen) $MnCl_{\chi}$,其中 $\chi=0$,1, 2, 3。

你還需要 i) 測量產物的質量。ii) 用 TLC 鑑定產物的純度。iii) 用碘滴定來決定金屬的氧化數。在氧化還原滴定中,你要使用大會所提供類似你的產物-已配好的(salen*) $MnCl_x$ 溶液,其中 salen*表示 salen 苯環上的取代基為 H、COOH或 SO_3H 。

先讀完全部實驗步驟,並計畫好如何進行實驗,再開始操作實驗。有些實驗必須同時進行, 才能在預定的時間內完成所有的實驗。

Code: TAI

步驟:

A. (salen)MnCl_x的合成

- 1) 先取 2-3 粒的(salen)H, 晶體放入小樣品瓶中, 在後面 TLC 分析中會用到。
- 2) 將已秤好約 1.0 g 的(salen) H_2 樣品全部倒入 250 mL 的錐形瓶中,並加入攪拌子及 35 mL 的純乙醇。
- 3) 將錐形瓶放到加熱攪拌器上,加熱溶液並攪拌到所有固體都溶解(一般在乙醇快要沸騰時,固體才會完全溶解)。溶解後,稍微調降溫度控制鈕,只需維持混合物接近沸騰但不要沸騰的狀態。保持錐形瓶的瓶頸是冷的狀態。當你需要移動錐形瓶時,若瓶頸處太熱,可用折疊紙巾隔熱。
- 4) 將錐形瓶從加熱器移開,並加入已秤好約 1.9 g 的 Mn(OAc)₂ 4H₂O,此時溶液會變成深棕色。立刻將錐形瓶放回加熱器上,繼續加熱並攪拌 15 分鐘,維持混合物接近沸騰但不要讓溶液沸騰,保持錐形瓶的瓶頸是冷的狀態。
- 5) 將錐形瓶從加熱器移開,再加入 1 M 的 LiCl 的乙醇溶液(12 mL,為過量),再將錐形瓶放回加熱器上,繼續加熱 10 分鐘,維持混合物接近沸騰但不要讓溶液沸騰,保持錐形瓶的瓶頸是冷的狀態。
- 6) 上述步驟完成後,將錐形瓶從加熱器移開,放進冰浴中30分鐘,以進行結晶。必要時,每5分鐘用玻璃棒刮刮錐形瓶液面下的內壁,如此可加速結晶。晶體也許一開始就會出現,也許會在10到15分鐘後才出現。
- 7) 用小的赫氏 (Hirsch) 漏斗和抽濾瓶,以真空抽濾方式來收集晶體。用滴管吸取少量丙酮 (acetone) 清洗固體,並讓固體繼續抽乾 10 到 15 分鐘。
- 8) 將標示為 "product" 的樣品瓶拿出,若尚未秤重(標籤上未標示重量),先去秤重。之後 再將產物放入已秤重過的樣品瓶中,再次秤重並記錄於下表中 m_p 位置處。也記下其 他試劑的重量: (salen) H_2 為 m_s , $Mn(OAc)_2$ · $4H_2O$ 為 m_{Mn} 。
- 9) 將含產物的樣品瓶放到夾鏈袋中。

標有 "Product" 的樣品瓶空瓶重:	g
標有 "Product" 的樣品瓶含產物重:	g
產物淨重, m_p :	g
$(salen)H_2$ 之重量(寫在它的瓶子上,抄下來), m_S :	g
Mn(OOCCH ₃) ₂ ·4H ₂ O之重量(寫在它的瓶子上,抄下來	(K) , m_{Mn} :
	g

Code: TAI

B. 大會提供之(salen*)MnCl、樣品的定量分析

R = H, COOH, or SO_3H

安全吸球的操作方法

- 1) 將安全吸球接到吸量管
- 2) 用力擠壓安全吸球
- 3) 壓向上的箭頭之位置,即可吸入溶液。
- 4) 壓向下的箭頭之位置,即可將溶液擠出。

注意: 吸量管和滴定管都是可立即使用,不需潤洗。

- 1) 用吸量管量取 10.00 mL的 (salen*)MnCl_x溶液到 125 mL 之錐形瓶中。
- 2) 加入 $5.00 \, \text{mL}$ 的 ascorbic acid(維生素 C)溶液至上述溶液,混合均匀。靜置 3-4 分鐘 以進行反應。
- 3) 反應完後,立刻用 KI₃溶液滴定,用 5 滴 1%的澱粉溶液作為指示劑。終點的藍色或藍綠色必須維持 30 秒以上。
- 4) 如果時間允許,重覆滴定 1~2 次,以提高準確度。

將滴定結果記錄在下表。

#	KI,初始刻度(mL)	KI ₃ 最終刻度(mL)	KI ₃ 使用體積(mL)
1			
2			
3			

Code: TAI

i. 寫下你用來計算 (salen*) $\mathrm{MnCl}_{\mathrm{x}}$ 分子量的 KI_{3} 溶液體積:

所耗掉的 KI3溶液體積(計算用):

mL

(salen*)MnCl_x之濃度(瓶上標籤有註明):

___ mg/mL

ascorbic acid (維生素 C) 之濃度(瓶上標籤有註明):

_____N

ii. 用你的滴定數據和下表,推斷出 x 及Mn 的氧化數、並在方框中註明取代基(R = H, COOH, SO_3H)為何?

R	x	(理論分子量)/x,
		g/mol
. Н	1	357
Н	2	196
Н	3	143
СООН	1	445
СООН	2	240
СООН	3	172
SO ₃ H	1	517
SO ₃ H	. 2	276
SO ₃ H	3	196

C. 以 TLC 鑑定 (salen)MnClx 的純度

1) 取少量固體產物 (salen)MnCl、置於樣品瓶中,用塑膠滴管加入幾滴乙醇以溶解固體。

- 2) 滴入數滴乙醇到裝有 $(salen)H_2$ 的樣品瓶中以溶解固體 (可搖動樣品瓶,若無法完全溶解沒有關係)。
- 3) 檢查 TLC 片,確定可完全放入燒杯 (展開槽) 中。必要時可向監考老師借用剪刀剪裁 TLC 片的大小,以便能完全放入 TLC 的展開槽內。
- 4) 將大張的圓形濾紙稍作摺疊或剪裁 (使濾紙的高度幾乎和燒杯相等),再將濾紙放入燒杯內,加入乙醇至燒杯內以潤濕濾紙,並保持展開液的高度為 3~4 mm 高,用錶玻璃蓋住燒杯後即成為展開槽。
- 5) 用鉛筆點出欲點上樣品的原點位置。
- 6) 用不同的毛細管分別取上述兩種液體並點至 TLC 片上面。
- 7) 將 TLC 片置於燒杯內展開,並將錶玻璃蓋在燒杯上方,展開約 10~15 分鐘。
- 8) 用鉛筆描繪出展開液最前緣的位置及展開後具有顏色的點的位置。
- 9) 在空氣中讓 TLC 片乾燥後,再將它置於夾鏈袋內。
- 10)計算 (salen) H, 和 (salen) MnCl, 的 Rf值。

i. 在答案紙上描繪出 TLC 上所有的的資訊。

ii.計算並記錄 (salen) $\mathrm{H_2}$ 和 (salen) $\mathrm{MnCl_x}$ 的 $\mathrm{R_f}$ 值。

R_f , (salen) H_2 :		
R_f , (salen)MnCl _x :		
J		

完成實驗後:

- a) 將廢液倒至 "Liquid Waste" 的容器內。
- b) 將使用過的樣品瓶放至 "Broken Glass Disposal" 的容器內。
- c) 將玻璃儀器放回原來的 "Kit #2"、 "Kit #3" 及 "Kit #4" 的盒子內。