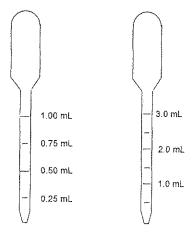


Инструкции (Задача 1)

- Буклет «Задача 1» с листами ответов включает 10 листов.
- У Вас есть 15 минут до начала экспериментальной работы, чтобы полностью прочитать буклет «Задача 1».
- На выполнение Задачи 1 Вам дается 2 часа 15 минут.
- Начинайте работу только после того, как прозвучит команда **START**. Вы должны немедленно прекратить работу после команды **STOP**. Если Вы продолжите работу в течение 5 минут после этого, Вы будете дисквалифицированы с нулевым результатом за весь экспериментальный тур. Вы должны оставаться на своем рабочем месте после команды **STOP**. Преподаватель подойдет к Вам и проверит рабочий стол. Вы должны оставить на столе буклет «Задача 1» с ответами.
- Вы обязаны соблюдать правила техники безопасности, принятые на МХО. Находясь в лаборатории, Вы должны постоянно носить защитные или Ваши собственные очки. Вы можете работать в перчатках.
- При нарушении правил техники безопасности Вы получите только **ОДНО ПРЕДУПРЕЖДЕНИЕ**. При повторном нарушении Вы будете выдворены из лаборатории с нулевым результатом за весь практический тур.
- Если у Вас возникли вопросы по технике безопасности или Вам нужно выйти из практикума, обратитесь к Вашему преподавателю.
- Вы можете использовать только Ваше рабочее место.
- Заполняйте листы ответов только выданной Вам ручкой. Не пишите карандашом.
- Используйте только выданный Вам калькулятор.
- Записывайте результаты только в отведенные для этого места в буклете. Любые записи, сделанные в других местах, оцениваться не будут. Используйте оборотную сторону листов буклета в качестве черновика.
- Выбрасывайте закрытые пузырьки с остатками растворов в контейнер подписанный "Used Vials" («Использованные пузырьки»)
- Выливайте не нужные более растворы в контейнер, подписанный "Liquid Waste" («Жидкие отходы»).
- Выбрасывайте осколки ампулы в контейнер, подписанный "Broken Glass Disposal" («Битое стекло»).
- Вы можете заменить посуду или получить дополнительные реактивы (за исключением ацетона- d_6) без штрафа только один раз. За каждую последующую замену Вы будете оштрафованы 1 баллом из 40.
- В любой момент Вы можете попросить у преподавателя официальную английскую версию для уточнения непонятных формулировок.

Реактивы и оборудование (Задача 1)


Реактивы (жирным шрифтом в таблице выделены подписи на этикетках)

	R-фразы ⁺	S-фразы ⁺
~2 M HCl,* водный раствор, 50 мл в	R34, R37	S26, S45
бутылочке		
~ 0.01 М KI ₃ , [*] водный раствор, 10 мл в		
пузырьке, подписанном "І2".	Version 1	
Ацетон, $(CH_3)_2CO$, $M = 58.08$ г/моль,	R11, R36, R66, R67	S9, S16, S26
плотность = 0.791 г/мл, 10.0 мл в пузырьке		
Ацетон- d_6 , (CD ₃) ₂ CO, M = 64.12 г/моль,	R11, R36, R66, R67	S9, S16, S26
плотность = 0.872 г/мл, 3.0 мл в ампуле		

⁺ Расшифровку R- и S-фраз смотрите на странице 3.

Оборудование - Kit #1

- Одна стеклянная бутылочка с дистиллированной водой
- 15 стеклянных пузырьков на 20 мл с завинчивающимися крышками
- 10 пластиковых пипеток на 1 мл с делениями по 0.25 мл (mL) для перенесения жидкости (см. рис.).
- 10 пластиковых пипеток на 3 мл с делениями по 0.50 мл (mL) для перенесения жидкости (см. рис.).
- Цифровой секундомер

^{*} Точная концентрации приведена на этикетках.

R- и S-фразы (Задача 1)

- R11 Легковоспламеняющийся
- R34 Вызывает ожоги
- R36 Вызывает раздражение глаз
- R37 Вызывает раздражение органов дыхания
- R66 Постоянный контакт может вызвать растрескивание кожи
- R67 Пары вызывают сонливость и головокружение
- S9 Хранить в хорошо проветриваемом помещении
- S16 Хранить в стороне от источников воспламенения
- S26 В случае попадания в глаза немедленно промойте большим количеством воды и обратитесь к врачу
- S45 При несчастном случае и/или плохом самочувствии немедленно обратитесь к врачу

Задача 1

18 баллов

a	b	c	d	e	f	g	Очки	баллы
10	2	10	12	16	12	8	70	18
							3	

Кинетика, изотопный эффект и механизм реакции иодирования ацетона

Для изучения механизмов реакций часто используют кинетические данные в сочетании с изотопным эффектом. Хотя изотопно-замещенные молекулы проявляют схожие химические свойства, скорости реакций могут различаться.

В этой задаче вы изучите кинетику и изотопный эффект в реакции иодирования ацетона в кислой среде:

$$R_3C$$
 CR_3
 R_3C
 R_2
 R_3C
 R_2
 R_3
 R_4

Кинетическое уравнение для данной реакции имеет вид:

$$r = k[\text{ацетон}]^m[\text{I}_3]^n[\text{H}^+]^p$$
.

В этом уравнении вы должны определить константу скорости k и целочисленные порядки реакции по веществам m, n и p. Вам также будет необходимо сравнить скорости реакций с участием обычного ацетона и дейтерозамещенного ацетона- d_6 , в котором все 6 атомов 1 Н замещены на дейтерий D, и определить величину изотопного эффекта реакции k_H/k_D . Все эти данные будут использованы для уточнения механизма реакции.

Важно: прежде, чем начать работу, прочитайте все задание целиком и составьте план работы.

Методика

Скорости реакций зависят от температуры. Узнайте у лаборанта температуру воздуха на Вашем рабочем месте и запишите ниже:

°C

Инструкции по использованию цифрового секундомера

- (1) Нажимайте кнопку [MODE], пока не появится надпись COUNT UP.
- (2) Для запуска секундомера нажмите кнопку [START/STOP].
- (3) Для остановки секундомера снова нажмите кнопку [START/STOP].
- (4) Для сброса данных и очистки дисплея нажмите кнопку [CLEAR].

Порядок работы

Отберите выбранные вами объемы соляной кислоты, дистиллированной воды и раствора трииодида калия (обозначенного " I_2 ") и поместите в реакционный сосуд (пузырек с крышкой). В полученной реакционной смеси начальные концентрации реагентов должны находиться в следующем диапазоне (необязательно исследовать весь диапазон):

 $[H^{+}]$: между 0.2 и 1.0 М

 $[I_3^-]$: между 0.0005 и $0.002~\mathrm{M}$

[ацетон]: между 0.5 и 1.5 М

Для того, чтобы начать реакцию, добавьте выбранный вами объем ацетона к приготовленной ранее смеси остальных реагентов, сразу закройте реакционный сосуд, включите секундомер, энергично встряхните сосуд один раз, и поставьте на белый фон. Запишите использованные объемы реагентов в таблицу в п. (а). Пока идет реакция, не прикасайтесь к сосуду ниже уровня жидкости. Об окончании реакции свидетельствует исчезновение коричневой окраски трииодид-иона. Запишите время, которое прошло до момента исчезновения окраски. Когда реакция закончится, отставьте в сторону сосуд, не открывая его, чтобы не дышать парами иодоацетона.

Повторите эту процедуру с различными концентрациями реагентов необходимое число раз. Запишите концентрации реагентов в каждом опыте в таблицу в п. (c).

Указание: в каждом опыте меняйте только одну концентрацию по сравнению с предыдущим опытом.

После того, как вы исследовали скорость иодирования обычного ацетона, необходимо измерить скорость реакции с участием дейтерозамещенного ацетона- d_6 . Обратите внимание, что ввиду высокой стоимости вещества Вам выдано только 3.0 мл ацетона- d_6 . Вы можете попросить дополнительное количество вещества, но за это с вас снимут один балл из 40.

Когда вы захотите начать работу с этим веществом, поднимите руку и старший преподаватель откроет для вас ампулу. Реакции с дейтерозамещенными веществами, как правило, протекают медленнее, чем с обычными, поэтому рекомендуем вам при работе с (CD₃)₂CO использовать такие концентрации, при которых реакция протекает достаточно быстро.

После окончания работы:

- а) вылейте всю воду из бутылки и положите ее вместе со всем неиспользованным оборудованием в коробку с надписью "Kit #1";
- b) использованные пипетки и закрытые реакционные сосуды выбросите в контейнеры под тягой;
- с) остатки ампулы из-под дейтероацетона выбросьте в контейнер с надписью «Broken Glass Disposal».

Убрать рабочее место можно и после команды STOP.

а. Запишите объемы веществ, использованных при изучении кинетики иодирования обычного ацетона (CH₃)₂CO, в таблицу. *Необязательно заполнять все строки таблицы.*

Номер опыта	Объем раствора HCl, мл	Объем дистил. H ₂ O, мл	Объем раствора I ₃ -, мл	Объем (CH ₃) ₂ CO, мл	Время исчезновения окраски I ₃ -, с
1					
2					
3					
4					
- 5					
6					
7					
8					

b. Запишите объемы, использованные при работе с ацетоном- d_6 , (CD₃)₂CO, в таблицу. *Необязательно заполнять все строки таблицы.*

Номер опыта	Объем раствора HCl, мл	Объем дистил. H ₂ O, мл	Объем раствора I ₃ ⁻ , мл	Объем (CD ₃)₂CO, мл	Время исчезновения окраски I ₃ -, с
1d					
2d					
3d					
4d					

с. В таблицах ниже запишите результаты расчета концентраций реагентов и соответствующих скоростей реакций. Считайте, что объем реакционной смеси равен сумме объемов смешанных жидкостей. Для последующего расчета констант скорости $k_{\rm H}$ и $k_{\rm D}$ (в пунктах е и f) вам необязательно использовать данные всех опытов, но вы должны указать в последнем столбце, использовали вы данный опыт при расчете или нет.

$(CH_3)_2CO$:

Номер	Начальная	Начальная	Начальная	Средняя скорость	Использовали ли
опыта	[H ⁺],	[I ₃ -], M	[(CH ₃) ₂ CO], M	расходования I ₃ ⁻ , М с ⁻¹	вы данный опыт при расчете $k_{\rm H}$?
					Да Нет
1					
2					
3					
4		·			
5					
6					
7					
8					

$(CD_3)_2CO$:

Номер	Начальная [H ⁺], М	Начальная [I ₃ ¯], М	Начальная [(CD ₃) ₂ CO], М	Средняя скорость расходования I_3 , $M e^{-1}$	Использовали ли вы данный опыт при расчете k_D ? Да Нет
1d					
2d	-				
3d		ı	ž		
4d				·	

d. Запишите целочисленные порядки по ацетону, трииодид-иону и иону водорода в кинетическом уравнении

$$r = -\frac{\Delta \left[\mathbf{I}_{3}^{-} \right]}{\Delta t} = k \left[(\mathbf{CH}_{3})_{2} \mathbf{CO} \right]^{m} \left[\mathbf{I}_{3}^{-} \right]^{n} \left[\mathbf{H}^{+} \right]^{p}$$

m =

n =

p =

е. Рассчитайте константу скорости $k_{\rm H}$ для реакции с участием обычного ацетона (CH₃)₂CO, укажите ее размерность.

*k*_H =

f. Рассчитайте константу скорости $k_{\rm D}$ для реакции с участием ацетона- d_6 , (CD₃)₂CO, и найдите величину изотопного эффекта реакции, $k_{\rm H}/k_{\rm D}$.

kn =

 $k_{\rm H}/k_{\rm D} =$

g. Полученные вами кинетические и изотопные данные позволяют выяснить механизм реакции. Ниже приведены возможные элементарные стадии. Одна из стадий является лимитирующей (R.D.S.), тогда как во всех предшествующих ей стадиях быстро устанавливается квазиравновесие, смещенное в сторону реагентов.

Приведенную ниже таблицу заполните на основе *полученных вами* экспериментальных данных: кинетического уравнения (пункт d) и изотопного эффекта (пункт f). Для каждой стадии определите, согласуется ли предположение о том, что она является лимитирующей, с вашим кинетическим уравнением. Если да, то в первой свободной клетке для данной стадии поставьте галочку (✔), если нет − знак X. Аналогично, укажите для каждой стадии, согласуется ли предположение о том, что она является лимитирующей, с определенным вами изотопным эффектом.

	R.D.S.	R.D.S. согласуется
· ·	согласуется (🗸)	(У) с вашим
·	с вашим	изотопным
	кинетическим	эффектом
·	уравнением	или нет (Х)
	или нет (\mathbf{X})	
+ H ₃ O ⁺ + H ₂ O		
HO ⁺ + H ₂ O + H ₃ O ⁺		
HO + 1 ₃ - + 2 1-		Anna
HO ⁺		

Инструкции (Задача 2)

- Буклет «Задача 2» с листами ответов и периодической таблицей включает 10 листов.
- У Вас есть 15 минут до начала экспериментальной работы, чтобы полностью прочитать буклет «Задача 1».
- На выполнение **Задачи 2** Вам дается **2 часа 45 минут.** Планируя свою работу, учтите, что одна из стадий занимает 30 минут.
- Начинайте работу только после того, как прозвучит команда **START**. Вы должны немедленно прекратить работу после команды **STOP**. Если Вы продолжите работу в течение 5 минут после этого, Вы будете дисквалифицированы с нулевым результатом за весь экспериментальный тур. Вы должны оставаться на своем рабочем месте после команды **STOP**. Преподаватель подойдет к Вам и проверит рабочий стол. Вы должны оставить на столе:
 - буклет «Задача 2» с заданиями и листами ответов
 - 1 пластинку ТСХ в пакетике с молнией, подписанном Вашим кодом
 - Пузырек, подписанный "Product" («Продукт»)
- Вы обязаны соблюдать **правила техники безопасности**, принятые на МХО. Находять в лаборатории, Вы должны постоянно носить защитные или Ваши собственные **очки**. Для заполнения пипеток обязательно используйте резиновую грушу. Вы можете использовать **перчатки** при работе с реактивами.
- При нарушении правил техники безопасности Вы получите только **ОДНО ПРЕДУПРЕЖДЕНИЕ**. При повторном нарушении Вы будете выдворены из лаборатории с нулевым результатом за весь практический тур.
- Если у Вас возникли вопросы по технике безопасности или Вам нужно покинуть практикум, обратитесь к Вашему преподавателю.
- Вы можете использовать только на Ваше рабочее место.
- Заполняйте листы ответов только выданной Вам ручкой. Не пишите карандашом.
- Используйте только выданный Вам калькулятор.
- Записывайте результаты только в отведенные для этого места в листах ответов. Любые записи, сделанные в других местах, оцениваться не будут. Используйте оборотную сторону листов ответов в качестве черновика.
- Выбрасывайте использованные пузырьки в контейнер, подписанный "Broken Glass Disposal" («Битое стекло»).
- Выливайте не нужные более растворы в контейнер, подписанный "Liquid Waste" («Жидкие отходы»).
- Вы можете заменить посуду или получить дополнительные реактивы без штрафа только один раз. За каждую последующую замену Вы будете оштрафованы 1 баллом из 40.
- Вы можете попросить у преподавателя официальную английскую версию для уточнения непонятных формулировок в любой момент.

	18	2 4 00260	He	1.40		20.1797	Ne	1.50		39.948	Ā	1.80			83.80	추	1.90		131.29	Xe	2.10		(222.02)	조	2.20	8	(584)	nn	
	`	2		17	10	18.9984 20	L.	0.64	7 18	35.4527	ਠ	0.99		36	79.904	Ä	1.14	3 54	126.904		1.33	5 86	(209.99) (2			117 118	(294)	Nus	
Code: AZE				16	6	15.9994	0	99.0	16 17		တ	1.04		34 35	78.96	Se	1.18	52 53	127.60 1	<u>ө</u>	1.37	84 85	(208.98)		1.67	116	(292)	```	71
Co				15	7	14.0067	Z	0.70	15 1	30.9738	Ω_	1.10		33	74.9216	As	1.20	51 5	121.760	Sp	1.45	83 8	208.980	洒	1.55	115 1	(288)	Oup	70
				4	9	12.011	S	0.77	14		Š	1.17		32	72.61	g G	1.22	50	118.710	S	1.40	82	207.2	Pb	1.76	114	(588)	Ī.	69
				13	5	10.811	Ω	0.89	13	26.9815	Ā				69.723	ලි	1.35	49	114.818	=	1.67	81	204.383	F	1.70	113	(284)	Cut	89
					harmon								12	30	62.39	Zn	1.33	48	112.41	S	1.49	80	200.59	Hg	1.50	112	(582)	ű	67
												:	11	29	63.546	ರ	1.28	47	107.868	Ag		79	196.967	Αu	1.44	111	(272)	Rg	99
					SS		ента	задиус, Å					9	28	58.6934	Z	1.24	46	106.42	2	1.37	78	195.08	ă.	1.38	110	(271)	Ds	65
٠					Атомная масса			Ковалентный радиус, Å					6	27	58.9332	ပိ	1,25	45	102.906	胚	1.34	77	192.217	<u> </u>	1.36	10	<u> </u>	Mŧ	64
					ATA	,		*	٦.			•	8	26	55.8		1.24	44	101.07			9.2	190.23		1.35	108	(265)	Ξ	63
					-	1.00794	I	0.28				ı	-		54.9			43	(64.905)				186.	Re	1.37		(262.12)	<u>м</u>	62
					Mep							•	9	24				42	<u>ත</u>			~	183				(263.12)	Sg	61
					Атомный номер							ı	2		50.9415				92.9				180.9				(262.	g G	09
					AT								4		47.867		1.46	4	91.	Z	1.60	7.2	178		1.59	104	(261.	<u></u>	59
									r				2		44.9	သိ			88.9059	<u></u>		57-71		La-Lu		89-103		Ac-Lr	58
	ŗ			7	+	9.01	 Be	***************************************		24.3	§ Z		6	٧	40.(<u>ვ</u>		38	87	స్			137.	Ba		88	(226	Ra 2.25	57
Name:		1.00794	I 8	0.25	3	6.941	J		<u>-</u>	22.9898	e Z		7	S .	39.0983	<u> </u>		37	85.4678	88		52	132.905	క్ర		87	(223.02)	Ľ.	
ž			~				7				co					4				ťΩ				9				7	

7.1	174.04	3	1.72	103	(260.1)	_	
70	173.04	γp	1,94	102		No	
69	168.934	Ę	1.72	101	(258,10)	Md	
68	167.26	Ш	1.73	100	(257.10)	F	
67	164.930	유	1.74	66	(252.08)	TI S	2.03
99	162.50	۵	1.75	94 95 96 97 98 99 100 101	(251.08)	Ç	1.99
65	158.925	Tp	1.76	97	(247.07)	ਲ	1.72
64	157.25	рg	1.79	96	(247.07)	CB	1.74
63	151.965	ם	2.04	95	(243.06)	Am	1.73
62	150.36	Sm	1.80	94	(244.06)	Pu	1.59
61	(144.91)	Ę	1.83	93	(237.05)	Š	1.55
09	144.24	NG	1.81	92	238.029	>	1.38
59	140.908	ď	1.82	91	231.036	g.	1,56
58	140.115	సి	1.83	89 90 91 92 93 94	232.038	£	1.80
57	138.906	2	1.87	86	(227.03)	Ac	1.88

The 44th IChO – Practical Examination. The official English version

Реактивы и оборудование (Задача 2)

<u>Реактивы и материалы (соответствующие надписи на упаковках выделены жирным</u> шрифтом в кавычках)

	R-фраза	S-фраза
«(salen)H₂» , ^a ~1.0 г ^b в пузырьке	R36/37/38	S26 S28A S37 S37/39
		S45
« Mn(OOCCH₃)₂ 4H₂O» , ~1.9 г ^b в пузырьке	R36/37/38 R62 R63	S26 S37/39
1M раствор хлорида лития (LiCl) в этаноле, «Lithium chloride solution», 12 мл в пузырьке	R11 R36/38	S9 S16 S26
Этанол, « Ethanol », 70 мл в пузырьке	R11	S7 S16
Ацетон, «(CH ₃) ₂ CO», 100 мл в пузырьке	R11 R36 R66 R67	S9 S16 S26
«(salen*)MnCl _x », ^c ~32 мл раствора с приблизительной концентрацией ~3.5 мг/мл ^b , в пузырьке КI ₃ , ~0.010 М раствор в воде, ^b 50 мл в		
пузырьке, обозначенном « \mathbf{I}_2 ».		
«Ascorbic Acid», ~0.030 М раствор аскорбиновой кислоты в воде, ^b 20 мл в пузырьке		
«1% Starch», раствор крахмала в воде, 2 мл в пузырьке		
«TLC plate» – одна пластинка для TCX (силикагель) 5 см × 10 см в закрытом пластиковом пакете		

 $^{^{\}mathrm{a}}$ Формула лиганда (salen) H_{2} :

^b Точное значение указано на этикетке.

 $^{^{\}rm c}$ (salen*)MnCl $_{\rm x}$ (обе группы R одинаковые и могут быть H, или COOH, или SO $_{\rm 3}$ H):

Оборудование

Для общего использования: Весы

Для индивидуального использования:

- Два штатива с лапками, расположенных под тягой и подписанных вашим кодом
- Одна магнитная мешалка с подогревом
- Одна линейка (300 мм)
- Один карандаш

Набор оборудования «Kit #2»:

- Две колбы Эрленмейера на 250 мл (одна для синтеза и одна для кристаллизации)
- Один градуированный цилиндр объемом 50 мл
- Один овальный якорь (20 мм) для перемешивания
- Одна воронка Хирша для фильтрования
- Бумажные фильтры для воронки Хирша и камеры для ТСХ
- Одна колба Бунзена (125 мл) для вакуумного фильтрования
- Резиновый адаптер конической формы для вакуумного фильтрования
- Одна пластиковая ледяная баня (0,5 л)
- Одна стеклянная палочка
- Две пластиковые пипетки (1 мл) для переноса жидкостей (смотри рисунок справа)
- Один пластиковый шпатель
- Один пустой **пузырек с крышкой (4 мл)** подписанный «Product» для синтезированного вещества

Набор оборудования «Kit #3»:

- Три пустых маленьких пузырька с завинчивающимися крышками (для ТСХ)
- Десять капилляров (100 мм) для ТСХ
- Одно часовое стекло (для закрывания камеры для ТСХ)
- Один стаканчик (250 мл), используемый как камера для ТСХ

Набор оборудования «Kit #4»:

- Одна собранная и готовая для использования бюретка (25 мл), расположена под тягой
- Одна маленькая пластиковая воронка

- Четыре колбы Эрленмейера (125 мл)
- Одна резиновая груша с клапанами для заполнения пипеток
- Одна пипетка на 10 мл
- Одна пипетка на 5 мл

R- и S-фразы (Задача 2)

- R11 Легковоспламеняющийся
- R36/37/38 Вызывает раздражение глаз, органов дыхания и кожи
- R62 Возможный раск дисфункции половых органов
- R63 Возможный риск при беременности
- R66 Постоянный контакт может вызвать растрескивание кожи
- R67 Пары вызывают сонливость и головокружение
- S7 Хранить плотно зактрытым
- S9 Хранить в хорошо проветриваемом помещении
- S16 Хранить в стороне от источников воспламенения
- S26 В случае попадания в глаза немедленно промойте большим количеством воды и обратитесь к врачу
- S28A При попадании на кожу промойте большим количеством воды
- S37 Работайте в перчатках
- S37/39 Работайте в перчатках и защитных очках/маске
- S45 При несчастном случае и/или плохом самочувствии немедленно обратитесь к врачу

Задача 2

22 балла

Синтез комплекса марганца с лигандом salen и определение формулы продукта

A	B-i	B-ii	C-i	C-ii	Очки	Баллы
10	15	4	4	2	35	22

Комплексы ионов 3d-металлов с лигандом бис(салицилиден)этилендиамином (salen) используются в органическом синтезе как эффективные катализаторы разнообразных окислительно-восстановительных реакций.

 $(salen)H_2, R = H$

 $(salen*)H_2$, R = H или COOH или SO₃H

В комплексах с salen стабилизируются различные степени окисления 3d-элементов. Так, в зависимости от условий реакции, марганец может иметь степени окисления от +2 до +5.

В этой задаче вы должны синтезировать комплекс ионов марганца с salen по реакции ацетата Mn(II) с $(salen)H_2$ в этаноле на воздухе в присутствии LiCl. В таких условиях вы можете получить комплекс состава $(salen)MnCl_x$, где х может принимать значения 1, 2 или 3.

Вам потребуется: i) определить массу полученного продукта, ii) с помощью ТСХ охарактеризовать его чистоту и iii) определить степень окисления марганца в комплексе с использованием иодометрического окислительно-восстановительного титрования. Для титрования вы будете использовать выданный Вам раствор комплекса, являющегося аналогом Вашего продукта, (salen*)MnCl_x, в котором марганец имеет такую же степень окисления, что и вашем продукте, а заместителем R в бензольных кольцах может быть H, СООН или SO₃H.

Перед тем, как приступить к работе, внимательно прочитайте условие задачи до конца и правильно спланируйте свою работу. Учтите, что некоторые операции лучше выполнять параллельно.

Методика синтеза:

А. Синтез комплекса (salen)MnCl_x

- 1) Отложите 2-3 кристаллика (salen) H_2 в маленький пузырек для последующего использования в TCX анализе.
- 2) Перенесите всю выданную Вам навеску (\sim 1.0 r) (salen) H_2 в 250 мл колбу Эрленмейера. Положите в колбу якорь для перемешивания и прилейте 35 мл абсолютного этанола.
- 3) Поставьте колбу на мешалку с подогревом. Нагревайте содержимое колбы при постоянном перемешивании до полного растворения лиганда (обычно растворение наступает тогда, когда этанол нагревается почти до кипения). Затем снизьте температуру нагрева реакционной смеси для поддержания последней в состоянии близком к кипению. Не допускайте кипения, горлышко колбы не должно быть горячим. Если горлышко колбы окажется горячим для удерживания рукой, используйте свернутое бумажную салфетку.
- 4) Снимите колбу с плитки и добавьте в нее весь выданный вам образец Mn(OAc)₂ ·4H₂O (~1.9 г). Смесь должна окраситься в темно-коричневый цвет. Сразу же верните колбу на плитку и продолжайте нагрев с перемешиванием в течение 15 минут. Не допускайте кипения, горлышко колбы не должно быть горячим.
- 5) Снимите колбу с плитки и перелейте в нее выданный 1 М раствор LiCl в этаноле (12 мл, избыток). Верните колбу на плитку и продолжайте нагрев с перемешиванием в течение 10 минут. Не допускайте кипения, горлышко колбы не должно быть горячим.
- 6) После этого снимите колбу с плитки и поставьте в баню со льдом для кристаллизации на 30 минут. Каждые 5 минут аккуратно потирайте стенки внутри колбы ниже уровня жидкости стеклянной палочкой для ускорения кристаллизации комплекса (salen)MnCl_x. Первые кристаллы могут появиться сразу после начала охлаждения или через 10-15 минут.
- 7) Используя вакуумную линию под тягой (соответствующий кран помечен как "Vacuum"), фильтровальную бумагу, маленькую воронку Хирша и колбу Бунзена отфильтруйте образовавшийся осадок. С помощью пипетки промойте осадок на фильтре несколькими каплями ацетона, не отсоединяя вакуум. Оставьте осадок на фильтре (не отсоединяя вакуум) на 10-15 минут для высушивания.
- 8) Взвесьте пустой пузырек "Product" и перенесите в него продукт с фильтра, затем определите и запишите массу продукта, m_p , в лист ответов. Также запишите в лист

Фамилия	:
чаминия	

Код: АZЕ_

ответов массу использованных реактивов в синтезе: (salen) H_2 , m_S , и $Mn(OOCCH_3)_2 \cdot 4H_2O$, m_{Mn} .

9) Положите пузырек с продуктом в пакетик с застежкой.

Масса пустого пузырька для продукта:	T
Масса пузырька с высушенным продуктом:	Γ
Масса продукта, m_p :	·
Macca образца (salen)H ₂ (перепишите с этикетки	пузырька), m_S :
	r
Масса Mn(ООССН ₃) ₂ ·4H ₂ О (перепишите с этике	тки пузырька), m_{Mn} :

В. Титриметрический анализ выданного образца (salen*)MnCl_x

$$R = (\text{salen*}) \text{MnCl}_{x}$$

$$\text{HO} \text{OH} \text{R} = (\text{Salen*}) \text{MnCl}_{x}$$

R = H, COOH, or SO_3H

Работа с резиновой грушей, предназначенной для заполнения пипеток

- 1) Наденьте грушу на пипетку.
- 2) Сильно сожмите резиновую грушу.
- 3) Для того, чтобы набрать жидкость в пипетку, нажмите клапан со стрелкой, направленной вверх
- 4) Для того, чтобы слить жидкость из пипетки, нажмите клапан со стрелкой, направленной вниз.

Примечание: Пипетки и бюретку можно использовать без дополнительной подготовки.

- 1) С помощью мерной пипетки перенесите 10.00 мл выданного вам раствора (salen*)MnCl_x в колбу Эрленмейера (объемом 125 мл).
- 2) К этому раствору с помощью мерной пипетки добавьте 5.00 мл раствора аскорбиновой кислоты и тщательно перемешайте. Дайте полученному раствору постоять 3-4 минуты, не более.
- 3) После этого сразу же оттитруйте реакционную смесь раствором KI₃, добавив в качестве индикатора 5 капель 1%-ного раствора крахмала («1% Starch»), чтобы предотвратить окисление аскорбиновой кислоты кислородом. В конечной точке титрования голубая или зелено-голубая окраска раствора должна сохраняться как минимум 30 секунд.
- 4) Проведите 1-2 повторных титрования для повышения точности ваших результатов. Запишите результаты работы в таблицу:

No	Начальные показания	Конечные показания	Объем KI ₃ ,
титрования	бюретки, мл	бюретки, мл	израсходованный на
			титрование, мл
1			
2			
3			

Фамилия:	Код: АΖЕ
i. Укажите объем (выбранный Вами или средниспользовать для вычисления молярной масси	ний) раствора KI ₃ , который вы будете ы (salen*)MnCl _x :
Объем раствора KI ₃ :	МЛ
Концентрация (salen*)MnCl _x (указана н	аа этикетке пузырька): мг/мл

Концентрация аскорбиновой кислоты (указана на этикетке пузырька):

____M

іі. Используя результаты титрования и дополнительные данные из таблицы, приведенной ниже, определите величину x, степень окисления марганца и группу-заместитель R в salen (R = H, COOH, SO_3H). Запишите ответы в соответствующих местах ниже:

R	Х	Теоретическое значение величины М/х, г/моль
Н	1	357
Н	2	196
Н	3	143
СООН	1	445
СООН	2	240
СООН	3	172
SO ₃ H	1	517
SO ₃ H	2	276
SO ₃ H	3	196